Karen and Steve each have a sibling with sickle-cell disease. Neither Karen nor Steve nor any of their parents have the disease, and none of them have been tested to see if they carry the sickle-cell allele. Based on this incomplete information, calculate the probability that if this couple has a child, the child will have sickle-cell disease.
Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
13. Mendelian Genetics
Autosomal Inheritance
Problem 16b
Textbook Question
You have crossed two Drosophila melanogaster individuals that have long wings and red eyes—the wild-type phenotype. In the progeny, curved wings and lozenge eyes mutant phenotypes appear as follows. Is the lozenge-eyed allele autosomal recessive, autosomal dominant, sex-linked recessive, or sex-linked dominant?


1
Examine the phenotypic ratios in the progeny. Notice that both males and females exhibit the lozenge eyes phenotype, which suggests that the trait is not sex-limited.
Calculate the total number of progeny with lozenge eyes: 300 males with long wings and lozenge eyes + 100 males with curved wings and lozenge eyes = 400 males with lozenge eyes.
Compare the number of lozenge-eyed males to the total number of males: 400 lozenge-eyed males out of 800 total males (300 long wings, red eyes + 100 curved wings, red eyes + 300 long wings, lozenge eyes + 100 curved wings, lozenge eyes).
Since lozenge eyes appear in both males and females, and the ratio of lozenge-eyed individuals is approximately 1:1 in males, consider whether the trait could be sex-linked. In sex-linked traits, males often show the phenotype more frequently if it is recessive.
Conclude that the lozenge-eyed allele is likely sex-linked recessive, as it appears in a significant portion of the male progeny, consistent with X-linked recessive inheritance patterns where males express the trait if they inherit the recessive allele.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Drosophila melanogaster Genetics
Drosophila melanogaster, commonly known as the fruit fly, is a model organism in genetics. Its simple genetic structure and short life cycle make it ideal for studying inheritance patterns. Traits such as wing shape and eye color are often used to illustrate Mendelian genetics, where dominant and recessive alleles determine phenotypic expression.
Recommended video:
Guided course
Genetic Code
Phenotype and Genotype
Phenotype refers to the observable characteristics of an organism, such as wing shape and eye color, while genotype refers to the genetic makeup that determines these traits. In this scenario, the wild-type phenotype (long wings and red eyes) is contrasted with mutant phenotypes (curved wings and lozenge eyes), which can help infer the inheritance pattern of the alleles involved.
Recommended video:
Guided course
Genotype & Phenotype
Inheritance Patterns
Inheritance patterns describe how traits are passed from parents to offspring. In this case, determining whether the lozenge-eyed allele is autosomal recessive, autosomal dominant, sex-linked recessive, or sex-linked dominant requires analyzing the ratios of phenotypes in the progeny. The presence of specific phenotypes in males and females can indicate whether the trait is linked to sex chromosomes or is inherited through autosomes.
Recommended video:
Guided course
Autosomal Inheritance
Related Videos
Related Practice
Textbook Question
2224
views