The mosquito-borne Zika virus (ZIKV) is one of the most feared viruses for pregnant women. Recent statistics justify this fear: Infants born to mothers infected with ZIKV during pregnancy face a risk of up to 42 percent of developing birth defects, including microcephaly (an abnormally small head and decreased brain volume). What do we know about how ZIKV causes damage to the developing brain? Researchers recently developed a mouse model for fetal brain defects associated with human ZIKV infection. To determine the effect of ZIKV on the number of neurons in the brain, ZIKV was injected into the brains of developing mouse embryos. Neurons were identified by staining sections of brain tissue with antibodies against NeuN, a neuron-specific protein, and the number of NeuN-positive cells per mm2 in specific regions was quantified. The results of three independent experiments are shown in the graph below. Use the P value provided to determine if the difference is significant or not (* means P< 0.05). Based on these results, what can you conclude?
Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
39. Digestive System
Blood Sugar Homeostasis
Struggling with General Biology?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
What is the first physiological response when blood glucose levels rise in a person with diabetes?
A
The pancreas releases insulin to lower blood glucose.
B
Glucose begins to accumulate in the bloodstream due to insufficient insulin action.
C
The liver immediately converts excess glucose to glycogen.
D
Muscle cells rapidly absorb glucose from the blood.

1
Understand the role of insulin in regulating blood glucose levels. Insulin is a hormone produced by the pancreas that facilitates the uptake of glucose by cells and promotes its storage as glycogen in the liver and muscles.
Recognize that in diabetes, there is either insufficient production of insulin (Type 1 diabetes) or reduced sensitivity to insulin (Type 2 diabetes), leading to impaired glucose regulation.
Analyze the physiological response when blood glucose levels rise in a person with diabetes. Due to insufficient insulin action, glucose cannot be effectively absorbed by cells, causing it to accumulate in the bloodstream.
Eliminate incorrect options based on the understanding of diabetes physiology. For example, the pancreas does not release sufficient insulin to lower blood glucose in diabetes, and muscle cells do not rapidly absorb glucose due to impaired insulin signaling.
Conclude that the first physiological response in diabetes when blood glucose levels rise is the accumulation of glucose in the bloodstream due to insufficient insulin action.
Watch next
Master Blood Sugar Homeostasis with a bite sized video explanation from Jason
Start learningRelated Videos
Related Practice
Textbook Question
770
views
Blood Sugar Homeostasis practice set
