Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
37. Plant Sensation and Response
Tropisms and Hormones
Problem 4
Textbook Question
In autumn, the amount of _________ increases and the amount of _________ decreases in fruits and leaf stalks, causing a plant to drop fruit and leaves.
a. Ethylene … auxin
b. Gibberellin … abscisic acid
c. Cytokinin … abscisic acid
d. Auxin … ethylene

1
Step 1: Understand the context of the question. The question is asking about the hormonal changes in plants during autumn that lead to the dropping of fruits and leaves. This process is part of plant physiology and involves plant hormones.
Step 2: Recall the role of ethylene. Ethylene is a plant hormone that promotes fruit ripening and leaf abscission (shedding of leaves). Its levels typically increase in autumn to facilitate these processes.
Step 3: Recall the role of auxin. Auxin is another plant hormone that helps maintain the attachment of leaves and fruits to the plant. Its levels decrease in autumn, which allows ethylene to promote abscission.
Step 4: Analyze the options provided. The correct answer should reflect the increase in ethylene and the decrease in auxin, as these hormonal changes are responsible for the dropping of fruits and leaves.
Step 5: Select the correct answer based on the analysis. The correct choice is 'a. ethylene … auxin,' as it matches the hormonal changes described in the question.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Ethylene
Ethylene is a plant hormone that plays a crucial role in the regulation of fruit ripening and leaf abscission. It promotes the shedding of leaves and fruits, especially in response to environmental cues such as changes in light and temperature. In autumn, increased ethylene levels signal the plant to prepare for winter by dropping its leaves and fruits.
Recommended video:
Guided course
Plant Hormones and Senescence
Auxin
Auxin is another important plant hormone that influences growth and development, particularly in elongation and cell division. It helps maintain the connection between the plant and its leaves and fruits by promoting their retention. As auxin levels decrease in autumn, the plant becomes less able to hold onto its leaves and fruits, facilitating their drop.
Recommended video:
Guided course
Auxin
Abscission
Abscission is the process by which plants shed their leaves, fruits, or flowers. This process is regulated by a balance of hormones, including ethylene and auxin. In autumn, the increase in ethylene and decrease in auxin trigger abscission, allowing the plant to conserve resources and prepare for the colder months ahead.
Recommended video:
Guided course
Plant Hormones and Senescence
Related Videos
Related Practice
Textbook Question
Test your knowledge of the five major classes of plant hormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene) by matching one hormone to each lettered box. (Note that some hormones will match up to more than one box.)
2250
views