The human-generated increase in greenhouse gases (see Module 38.3) provides many opportunities to study the effects of climate change. For example, snowshoe hares are adapted to the climate of their habitat in the taiga of the high mountains and northern regions of North America. One adaptation is seasonal changes in fur color—a white winter coat that turns brown in the spring—that camouflage hares from a long list of predators. These color changes are triggered by day length. As increasing spring temperatures cause earlier snowmelt in the taiga, biologists have observed many white hares sitting on brown earth. Suggest how this natural experiment could be used to investigate the effects of climate change on populations and communities in the taiga ecosystem (assume historical data are available).
Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
53. Conservation Biology
Conservation Biology
Problem 13
Textbook Question
Scientists around the world are collaborating to understand how deforestation, climate change, and natural processes will interact to affect one of the most productive and biodiverse ecosystems on Earth.
Researchers have measured the effects of periodic forest fires on primary productivity in Amazon rain forest plots, comparing years with average precipitation and years with severe drought. Propose which controls would be necessary for such studies.

1
Identify the variables: Determine the independent variable (e.g., presence or absence of forest fires) and the dependent variable (e.g., primary productivity of the forest).
Establish control plots: Set up control plots in the Amazon rainforest that are not affected by forest fires to serve as a baseline for comparison.
Ensure consistent conditions: Make sure that the control plots and experimental plots have similar conditions such as soil type, elevation, and species composition to isolate the effect of forest fires.
Monitor environmental factors: Record other environmental factors such as temperature, humidity, and precipitation in both control and experimental plots to account for their influence on primary productivity.
Use temporal controls: Compare data from years with average precipitation to years with severe drought to understand the interaction between forest fires and climate conditions on primary productivity.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Primary Productivity
Primary productivity refers to the rate at which energy is converted by photosynthetic and chemosynthetic autotrophs to organic substances. In ecosystems like the Amazon rainforest, it is crucial for understanding how energy flows and supports biodiversity. Measuring changes in primary productivity can reveal impacts of environmental stressors like drought and forest fires.
Recommended video:
Guided course
Primary Production in Aquatic Ecosystems
Deforestation
Deforestation involves the large-scale removal of trees, which can drastically alter ecosystems by reducing biodiversity, disrupting water cycles, and increasing carbon emissions. In the context of the Amazon rainforest, deforestation can exacerbate the effects of climate change and natural disturbances, making it a critical factor to control in studies assessing ecosystem productivity.
Recommended video:
Guided course
Habitat Destruction and Degradation
Experimental Controls
Experimental controls are essential for isolating the effects of specific variables in scientific studies. In the context of studying the Amazon rainforest, controls might include plots with no fire exposure, consistent precipitation levels, and undisturbed areas to compare against affected plots. These controls help ensure that observed changes in productivity are due to the variables being tested, such as drought or fire.
Recommended video:
Guided course
Negative & Positive Controls
Watch next
Master Conservation Biology and Biodiversity with a bite sized video explanation from Jason
Start learningRelated Videos
Related Practice
Textbook Question
875
views