The vast majority of animals that ever existed are now extinct, but Tereza Jezkova and John Wiens wondered which variables were most important in driving the diversification of species that exist today. Why are there so many species in some phyla, such as Cnidaria, but so few in others, such as Ctenophora? Based on your reading of this chapter, propose at least five traits that you think might have been most important in triggering diversification within phyla (examples: origin of hearing, origin of internal fertilization).
Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
24. History of Life on Earth
History of Life on Earth
Problem 15
Textbook Question
Which traits do not correlate strongly with diversification rate within phyla but are likely to have been important in the original diversification of animal phyla during the Cambrian? Select True or False for each trait.
T/F presence of a head
T/F mobile lifestyle
T/F terrestrial lifestyle
T/F bilateral symmetry

1
Understand the context: The Cambrian Explosion was a period of rapid diversification of animal life approximately 541 million years ago. During this time, many major animal phyla appeared.
Consider the trait 'presence of a head': In the Cambrian, the development of a head (cephalization) was significant for the evolution of more complex organisms, but it may not correlate strongly with diversification rates within phyla today.
Consider the trait 'mobile lifestyle': Mobility was crucial during the Cambrian for survival and resource acquisition, but within phyla, diversification may not be strongly linked to mobility now.
Consider the trait 'terrestrial lifestyle': During the Cambrian, life was predominantly aquatic, so terrestrial adaptations were not relevant to the initial diversification of animal phyla.
Consider the trait 'bilateral symmetry': This trait was important in the Cambrian for the development of more complex body plans, but within phyla, it may not strongly correlate with diversification rates today.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Cambrian Explosion
The Cambrian Explosion refers to a period approximately 541 million years ago when there was a rapid diversification of multicellular organisms, leading to the emergence of most major animal phyla. This event is significant because it marks a time of evolutionary innovation, where many new body plans and complex structures appeared, setting the stage for future evolutionary paths.
Recommended video:
Cambrian Explosion
Diversification Rate
Diversification rate in evolutionary biology refers to the speed at which new species form within a particular lineage or phylum. It is influenced by various factors, including environmental changes, genetic mutations, and ecological opportunities. Understanding diversification rates helps in studying how different traits may have contributed to the evolutionary success or failure of certain groups over time.
Recommended video:
Guided course
Metabolic Rate
Bilateral Symmetry
Bilateral symmetry is a body plan in which an organism can be divided into two identical halves along a single plane. This trait is significant in the context of the Cambrian Explosion as it allowed for more complex and efficient movement and sensory processing, which could have been advantageous in the early diversification of animal phyla. It is a common feature in many animal groups, indicating its evolutionary importance.
Recommended video:
Guided course
Overview of Animals - 4
Related Videos
Related Practice
Textbook Question
675
views