In many species native to tropical wet forests, seeds do not undergo a period of dormancy. Instead, they germinate immediately. Predict the role of ABA in these seeds. How would you test your prediction?
Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
37. Plant Sensation and Response
Tropisms and Hormones
Problem 14d
Textbook Question
Leaflets of Mimosa pudica (common names: sensitive plant, touch-me-not) have a remarkable ability to close up in response to being touched or physically moved.
How fast can the leaflets close?
How does this occur?
And more importantly, what benefit could this unusual response provide to the plant?
If just the leaflets located toward the end of a leaf are touched, the adjacent leaflets close in fairly rapid succession until all leaflets on a leaf close up.
Explain how electrical signaling may be involved in this response.

1
Mimosa pudica exhibits a rapid plant movement known as thigmonasty, where the leaflets close in response to touch or physical disturbance.
The closing of the leaflets is facilitated by changes in turgor pressure within the pulvini, which are specialized motor cells located at the base of each leaflet.
When a leaflet is touched, an electrical signal, similar to an action potential in animals, is generated and travels through the plant tissue.
This electrical signal triggers the rapid efflux of potassium ions (K+) from the pulvini cells, leading to a loss of water and a decrease in turgor pressure, causing the leaflets to fold.
The closing of the leaflets may serve as a defense mechanism to deter herbivores or to reduce water loss by minimizing the surface area exposed to the environment.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
1mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Thigmonasty
Thigmonasty refers to the non-directional movement of plant parts in response to touch or physical stimuli. In Mimosa pudica, this rapid movement is a defense mechanism against herbivores and environmental stress. The movement is caused by changes in turgor pressure within the plant cells, leading to the folding of leaflets.
Electrical Signaling in Plants
Electrical signaling in plants involves the transmission of electrical impulses through plant tissues, similar to nerve impulses in animals. In Mimosa pudica, these signals trigger rapid changes in cell turgor pressure, causing the leaflets to close. This signaling is facilitated by ion channels and changes in membrane potential, allowing for quick communication across the plant.
Recommended video:
Guided course
Electrical Signals of the Heart
Adaptive Advantage of Leaflet Closure
The ability of Mimosa pudica to close its leaflets provides several adaptive advantages. It can deter herbivores by making the plant appear less appealing or by startling them. Additionally, leaflet closure can reduce water loss and protect the plant from environmental stressors like heavy rain or wind, enhancing its survival in various habitats.
Recommended video:
Adaptive Radiation
Related Videos
Related Practice
Textbook Question
645
views