Many species of animals on islands are larger than related species on the mainland. Scientists hypothesize that this phenomenon, called island gigantism, evolved in response to the scarcity of competitors and predators on islands. Reduced competition and predation allow species to exploit more resources and free them from the need to hide in small refuges. The graph shown here compares the average carapace (shell) length of mainland and island tortoises. Summarize the results, then use the data to predict whether the surface area to volume ratio is higher in mainland or island tortoises.
Table of contents
- 1. Introduction to Biology2h 42m
- 2. Chemistry3h 37m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 6m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 53m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport1h 2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System1h 10m
- 40. Circulatory System1h 49m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System1h 4m
- 44. Animal Reproduction1h 2m
- 45. Nervous System1h 55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
38. Animal Form and Function
Metabolism and Homeostasis
Problem 14
Textbook Question
Many species of animals on islands are larger than related species on the mainland. Scientists hypothesize that this phenomenon, called island gigantism, evolved in response to the scarcity of competitors and predators on islands. Reduced competition and predation allow species to exploit more resources and free them from the need to hide in small refuges.
True or false: The body temperatures of island tortoises always closely match the temperatures in their environments.

1
Understand the concept of island gigantism: Island gigantism is a biological phenomenon where species on islands grow larger than their mainland relatives, often due to reduced competition and predation.
Consider the biology of tortoises: Tortoises are ectothermic animals, meaning their body temperature is largely influenced by the external environment.
Explore the relationship between ectothermy and environmental temperature: Ectothermic animals, like tortoises, rely on external heat sources to regulate their body temperature, often resulting in their body temperature closely matching the ambient temperature.
Evaluate the statement: Given that tortoises are ectothermic, their body temperature is likely to closely match the environmental temperature, unless they engage in behaviors to regulate it differently.
Conclude based on the evidence: The statement is likely true, as ectothermic animals typically have body temperatures that align with their surroundings, unless specific behaviors or environmental conditions alter this relationship.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
43sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Island Gigantism
Island gigantism refers to the phenomenon where species on islands evolve to be larger than their mainland counterparts. This is often due to reduced competition and predation, allowing species to exploit available resources more effectively. The lack of predators and competitors can lead to evolutionary changes that favor larger body sizes, which can be advantageous in resource-rich environments.
Recommended video:
Guided course
What is the Island Equilibrium Model?
Thermoregulation in Tortoises
Thermoregulation is the process by which animals maintain their body temperature within certain boundaries, even when environmental temperatures vary. Tortoises, being ectothermic, rely on external heat sources to regulate their body temperature. They may bask in the sun to warm up or seek shade to cool down, meaning their body temperature can closely match the ambient temperature, but not always precisely.
Recommended video:
Guided course
Thermoregulation
Ectothermy
Ectothermy is a biological feature where an organism relies on external environmental heat sources to regulate its body temperature. Unlike endotherms, ectotherms do not generate significant internal heat and must use behavioral adaptations to manage their thermal needs. This can lead to body temperatures that fluctuate with environmental conditions, as seen in reptiles like tortoises.
Recommended video:
Guided course
Thermoregulation
Watch next
Master Surface Area to Volume Ratio with a bite sized video explanation from Jason
Start learningRelated Videos
Related Practice
Textbook Question
569
views