Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Given the function , which of the following is the average rate of change of over the interval from to ?
A
B
C
D
Verified step by step guidance
1
Step 1: Recall the formula for the average rate of change of a function f(x) over an interval [a, b]. It is given by: , where f(b) and f(a) are the function values at x = b and x = a, respectively.
Step 2: Identify the interval [a, b] from the problem. Here, a = -6 and b = -3. Substitute these values into the formula.
Step 3: Compute f(a) and f(b) using the given function f(x) = 2x^2 - 3x + 1. For f(-6), substitute x = -6 into the function: . Similarly, compute f(-3): .
Step 4: Substitute the computed values of f(-6) and f(-3) into the formula for the average rate of change: .
Step 5: Simplify the numerator and denominator to find the average rate of change. The numerator is the difference between f(-3) and f(-6), and the denominator is the length of the interval, which is . Perform the arithmetic operations to complete the calculation.