Find by evaluating the following indefinite integral.
Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals4h 44m
- 9. Graphical Applications of Integrals2h 27m
- 10. Physics Applications of Integrals 3h 16m
- 11. Integrals of Inverse, Exponential, & Logarithmic Functions2h 34m
- 12. Techniques of Integration7h 39m
- 13. Intro to Differential Equations2h 55m
- 14. Sequences & Series5h 36m
- 15. Power Series2h 19m
- 16. Parametric Equations & Polar Coordinates7h 58m
7. Antiderivatives & Indefinite Integrals
Integrals of Trig Functions
Struggling with Calculus?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Evaluate the integral: .
A
B
C
D

1
Step 1: Recognize that the integral involves the square of a trigonometric function, \( \cos^2(x) \). Use the trigonometric identity \( \cos^2(x) = \frac{1 + \cos(2x)}{2} \) to simplify the integrand. Rewrite the integral as \( \int_0^{\pi/2} 3 \cos^2(x) \, dx = \int_0^{\pi/2} 3 \cdot \frac{1 + \cos(2x)}{2} \, dx \).
Step 2: Factor out the constant \( \frac{3}{2} \) from the integral. This gives \( \frac{3}{2} \int_0^{\pi/2} (1 + \cos(2x)) \, dx \). Split the integral into two separate integrals: \( \frac{3}{2} \left[ \int_0^{\pi/2} 1 \, dx + \int_0^{\pi/2} \cos(2x) \, dx \right] \).
Step 3: Evaluate the first integral, \( \int_0^{\pi/2} 1 \, dx \). The integral of 1 with respect to \( x \) is \( x \), so this becomes \( x \big|_0^{\pi/2} = \pi/2 - 0 = \pi/2 \).
Step 4: Evaluate the second integral, \( \int_0^{\pi/2} \cos(2x) \, dx \). The integral of \( \cos(2x) \) is \( \frac{1}{2} \sin(2x) \), so this becomes \( \frac{1}{2} \sin(2x) \big|_0^{\pi/2} = \frac{1}{2} [\sin(\pi) - \sin(0)] = \frac{1}{2} [0 - 0] = 0 \).
Step 5: Combine the results of the two integrals. The first integral contributes \( \pi/2 \), and the second integral contributes 0. Multiply the sum by \( \frac{3}{2} \): \( \frac{3}{2} \cdot (\pi/2 + 0) = \frac{3\pi}{4} \).
Watch next
Master Integrals Resulting in Basic Trig Functions with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
45
views
1
rank
Integrals of Trig Functions practice set
