Evaluate the indefinite integral:
Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals4h 44m
- 9. Graphical Applications of Integrals2h 27m
- 10. Physics Applications of Integrals 3h 16m
- 11. Integrals of Inverse, Exponential, & Logarithmic Functions2h 34m
- 12. Techniques of Integration7h 39m
- 13. Intro to Differential Equations2h 55m
- 14. Sequences & Series5h 36m
- 15. Power Series2h 19m
- 16. Parametric Equations & Polar Coordinates7h 58m
7. Antiderivatives & Indefinite Integrals
Indefinite Integrals
Struggling with Calculus?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Evaluate the indefinite integral as a power series: .
A
+ C
B
+ C
C
+ C
D
+ C

1
Step 1: Recognize that the integrand \( \frac{1}{1 - t^7} \) resembles the geometric series formula \( \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n \), which is valid for \( |x| < 1 \). Rewrite \( \frac{1}{1 - t^7} \) as \( \sum_{n=0}^{\infty} t^{7n} \).
Step 2: Substitute the series representation \( \sum_{n=0}^{\infty} t^{7n} \) into the integral \( \int \frac{1}{1 - t^7} \, dt \), resulting in \( \int \sum_{n=0}^{\infty} t^{7n} \, dt \).
Step 3: Use the property of integration to integrate term-by-term for power series. The integral of \( t^{7n} \) is \( \frac{t^{7n+1}}{7n+1} \), so the series becomes \( \sum_{n=0}^{\infty} \frac{t^{7n+1}}{7n+1} \).
Step 4: Add the constant of integration \( C \) to account for the indefinite integral. The result is \( \sum_{n=0}^{\infty} \frac{t^{7n+1}}{7n+1} + C \).
Step 5: Verify the convergence of the series for \( |t| < 1 \), ensuring the validity of the geometric series expansion used in the solution.
Watch next
Master Introduction to Indefinite Integrals with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
20
views
Indefinite Integrals practice set
