Here are the essential concepts you must grasp in order to answer the question correctly.
Quadratic Functions
A quadratic function is a polynomial function of degree two, typically expressed in the form f(x) = ax^2 + bx + c. The coefficient 'a' determines the direction of the parabola: if 'a' is positive, the parabola opens upwards, indicating a minimum value; if 'a' is negative, it opens downwards, indicating a maximum value.
Recommended video:
Solving Quadratic Equations Using The Quadratic Formula
Vertex of a Parabola
The vertex of a parabola is the highest or lowest point on the graph, depending on whether it opens upwards or downwards. For a quadratic function in standard form, the vertex can be found using the formula x = -b/(2a). The y-coordinate of the vertex gives the maximum or minimum value of the function.
Recommended video:
Domain and Range
The domain of a function refers to all possible input values (x-values) for which the function is defined, while the range refers to all possible output values (y-values). For quadratic functions, the domain is typically all real numbers, and the range depends on the vertex's position, either extending to positive or negative infinity based on whether the parabola opens upwards or downwards.
Recommended video:
Domain & Range of Transformed Functions