Here are the essential concepts you must grasp in order to answer the question correctly.
Rational Functions
A rational function is a function that can be expressed as the ratio of two polynomials. The general form is f(x) = P(x)/Q(x), where P(x) and Q(x) are polynomials. Understanding the behavior of rational functions involves analyzing their asymptotes, intercepts, and overall shape, which are influenced by the degrees and coefficients of the polynomials.
Recommended video:
Intro to Rational Functions
Asymptotes
Asymptotes are lines that a graph approaches but never touches. There are vertical asymptotes, which occur where the denominator of a rational function equals zero, and horizontal asymptotes, which describe the behavior of the function as x approaches infinity. Identifying these asymptotes is crucial for accurately graphing rational functions and understanding their limits.
Recommended video:
Introduction to Asymptotes
Intercepts
Intercepts are points where the graph of a function crosses the axes. The x-intercept occurs when f(x) = 0, which is found by setting the numerator of the rational function to zero. The y-intercept is found by evaluating the function at x = 0. Knowing the intercepts helps in sketching the graph and provides insight into the function's behavior.
Recommended video: