Here are the essential concepts you must grasp in order to answer the question correctly.
Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra states that every non-constant polynomial function of degree n has exactly n roots in the complex number system, counting multiplicities. This means that for a polynomial like f(x) = 6x^4 + 2x^3 + 9x^2 + x + 5, there will be four roots, which can be real or complex.
Recommended video:
Introduction to Algebraic Expressions
Descarte's Rule of Signs
Descarte's Rule of Signs provides a method to determine the number of positive and negative real zeros of a polynomial by analyzing the sign changes in the function's coefficients. For positive zeros, count the sign changes in f(x), and for negative zeros, count the sign changes in f(-x). This helps narrow down the possibilities for the types of zeros present.
Recommended video:
Cramer's Rule - 2 Equations with 2 Unknowns
Complex Conjugate Root Theorem
The Complex Conjugate Root Theorem states that if a polynomial has real coefficients, any nonreal complex roots must occur in conjugate pairs. This means if a polynomial has a complex root a + bi, then its conjugate a - bi is also a root. This theorem is essential for understanding the distribution of roots when analyzing polynomials with real coefficients.
Recommended video: