Determine the total number of electrons in the Be$_2^+$ ion. Since each beryllium atom has 4 electrons, Be$_2$ has 8 electrons, and removing one electron for the positive charge gives 7 electrons total.
Write down the molecular orbitals for the second period homonuclear diatomic molecules starting from the lowest energy: $\left(\text{\textbackslash sigma}_{1s}\right)$, $\left(\text{\textbackslash sigma}^*_{1s}\right)$, $\left(\text{\textbackslash sigma}_{2s}\right)$, and $\left(\text{\textbackslash sigma}^*_{2s}\right)$.
Fill the molecular orbitals with the 7 electrons following the Aufbau principle (fill lower energy orbitals first), Pauli exclusion principle (max 2 electrons per orbital with opposite spins), and Hund's rule (maximize unpaired electrons in degenerate orbitals).
Count the electrons in each orbital as you fill them: first fill $\left(\text{\textbackslash sigma}_{1s}\right)^2$, then $\left(\text{\textbackslash sigma}^*_{1s}\right)^2$, then $\left(\text{\textbackslash sigma}_{2s}\right)^2$, and finally place the remaining electron in $\left(\text{\textbackslash sigma}^*_{2s}\right)$.
Compare the electron configuration you obtained with the given options to identify the correct molecular orbital electron configuration for Be$_2^+$.