A 1.20 cm tall object is 50.0 cm to the left of a converging lens of focal length 40.0 cm. A second converging lens, this one having a focal length of 60.0 cm, is located 300.0 cm to the right of the first lens along the same optic axis. Find the location and height of the image (call it I1) formed by the lens with a focal length of 40.0 cm.
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
33. Geometric Optics
Ray Diagrams For Lenses
Problem 23
Textbook Question
(II) Two lenses, one converging with focal length 20.0 cm and one diverging with focal length -10.0 cm, are placed 25.0 cm apart. An object is placed 60.0 cm in front of the converging lens. Determine (a) the position and (b) the magnification of the final image formed. (c) Sketch a ray diagram for this system.

1
Step 1: Start by analyzing the first lens, which is a converging lens with a focal length of \( f_1 = 20.0 \, \text{cm} \). Use the lens equation \( \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \), where \( d_o \) is the object distance and \( d_i \) is the image distance. Substitute \( d_o = 60.0 \, \text{cm} \) and \( f_1 = 20.0 \, \text{cm} \) to solve for \( d_i \), the image distance for the first lens.
Step 2: Determine the nature of the image formed by the first lens. If \( d_i \) is positive, the image is real and on the opposite side of the lens. If \( d_i \) is negative, the image is virtual and on the same side as the object. Use this information to find the position of the image relative to the second lens, which is placed 25.0 cm away from the first lens.
Step 3: Treat the image formed by the first lens as the object for the second lens, which is a diverging lens with a focal length of \( f_2 = -10.0 \, \text{cm} \). Calculate the object distance for the second lens, \( d_o' \), by considering the distance between the two lenses and the position of the image from the first lens. Then, use the lens equation \( \frac{1}{f} = \frac{1}{d_o'} + \frac{1}{d_i'} \) to solve for \( d_i' \), the image distance for the second lens.
Step 4: Calculate the total magnification of the system. The magnification for each lens is given by \( M = -\frac{d_i}{d_o} \). Multiply the magnifications of the two lenses to find the overall magnification of the system: \( M_{\text{total}} = M_1 \times M_2 \).
Step 5: To sketch the ray diagram, draw the optical axis and place the two lenses at their respective positions. For the converging lens, draw rays from the object to show how they converge to form the first image. Then, use the first image as the object for the diverging lens and draw rays to show how they diverge to form the final image. Label all distances and focal points clearly.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
13mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Lens Formula
The lens formula relates the object distance (u), image distance (v), and focal length (f) of a lens, expressed as 1/f = 1/v - 1/u. This formula is essential for determining the position of the image formed by a lens. For converging lenses, the focal length is positive, while for diverging lenses, it is negative. Understanding this relationship allows for the calculation of image positions in optical systems.
Recommended video:
Lens Maker Equation
Magnification
Magnification (M) is the ratio of the height of the image (h') to the height of the object (h), and it can also be expressed as M = -v/u, where v is the image distance and u is the object distance. This concept is crucial for understanding how the size of the image compares to the size of the object. A positive magnification indicates an upright image, while a negative magnification indicates an inverted image.
Recommended video:
Mirror Equation
Ray Diagrams
Ray diagrams are graphical representations used to illustrate the path of light rays through optical systems, such as lenses. They help visualize how light interacts with lenses to form images. Key rays include the parallel ray, which passes through the focal point after refraction, and the focal ray, which travels through the center of the lens without bending. Constructing a ray diagram aids in understanding the position and characteristics of the final image.
Recommended video:
Ray Diagrams for Converging Lenses
Watch next
Master Ray Diagrams for Converging Lenses with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Textbook Question
20
views