The 12,000-kg Lunar Command Module is in a circular orbit above the Moon's surface. If it spends ¼ of its fuel energy ( J) bringing it to a circular orbit just above the surface, how high was its original orbit?
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
8. Centripetal Forces & Gravitation
Energy of Circular Orbits
Problem 77
Textbook Question
(III) Show that to slow down a spacecraft (perhaps to put it into orbit around a planet or moon) must be in the same direction as and have magnitude greater than u. Show that this means the spacecraft will then pass in front of Jupiter. Draw a new diagram to replace Fig. 8–25b for this situation.

1
Understand the problem: The spacecraft is approaching Jupiter, and we need to analyze how its velocity vector \( \vec{v}_0 \) (initial velocity) must relate to Jupiter's gravitational pull \( \vec{u} \) (relative velocity of Jupiter with respect to the spacecraft) to slow it down and put it into orbit. This involves concepts of relative velocity, gravitational interaction, and orbital mechanics.
Step 1: Define the relative velocity \( \vec{v}_{rel} \). The relative velocity of the spacecraft with respect to Jupiter is given by \( \vec{v}_{rel} = \vec{v}_0 - \vec{u} \), where \( \vec{v}_0 \) is the spacecraft's velocity and \( \vec{u} \) is Jupiter's velocity relative to the spacecraft.
Step 2: Analyze the condition for slowing down. To slow down the spacecraft, \( \vec{v}_0 \) must be in the same direction as \( \vec{u} \) (aligned vectors) but have a magnitude greater than \( \vec{u} \). This ensures that the spacecraft's relative velocity \( \vec{v}_{rel} \) is directed opposite to Jupiter's gravitational pull, allowing Jupiter's gravity to decelerate the spacecraft effectively.
Step 3: Explain the trajectory. If \( \vec{v}_0 \) satisfies the above condition, the spacecraft will pass in front of Jupiter (relative to its motion) because the gravitational force will act to curve the trajectory forward, creating a deceleration effect. This is a result of the spacecraft's initial velocity being greater than Jupiter's velocity, causing it to overshoot and then be pulled into an orbit.
Step 4: Diagram explanation. To replace Fig. 8–25b, draw a diagram showing Jupiter at the center, the spacecraft's initial velocity vector \( \vec{v}_0 \) pointing in the same direction as \( \vec{u} \) but with greater magnitude, and the resulting curved trajectory of the spacecraft passing in front of Jupiter. Include the gravitational force vector \( \vec{F}_g \) acting towards Jupiter and the relative velocity vector \( \vec{v}_{rel} \) directed opposite to \( \vec{u} \).

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
14mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Relative Velocity
Relative velocity is the velocity of one object as observed from another object. In this context, it is crucial to understand how the velocity of the spacecraft (v₀ₓ) relates to the velocity of the planet or moon (u→). When v₀ₓ is in the same direction as u→ and has a greater magnitude, it indicates that the spacecraft is effectively slowing down relative to the celestial body, allowing for orbital insertion.
Recommended video:
Guided course
Intro to Relative Motion (Relative Velocity)
Orbital Mechanics
Orbital mechanics is the study of the motion of objects in space under the influence of gravitational forces. To successfully slow down a spacecraft and achieve orbit, one must consider the gravitational pull of the planet or moon, as well as the spacecraft's trajectory. Understanding these principles helps in determining the necessary velocity and direction for the spacecraft to enter a stable orbit.
Recommended video:
Guided course
Geosynchronous Orbits
Trajectory and Path of Motion
The trajectory of an object is the path it follows through space as a function of time. In this scenario, the spacecraft's trajectory must be adjusted so that it passes in front of Jupiter after slowing down. This involves calculating the correct angle and speed to ensure that the spacecraft's path intersects with Jupiter's position, which is essential for visualizing the spacecraft's movement in the provided diagram.
Recommended video:
Guided course
Curved Paths & Energy Conservation
Watch next
Master Energy of Circular Orbits with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
1
comments