An observer in frame S′ is moving to the right (+x-direction) at speed u = 0.600c away from a stationary observer in frame S. The observer in S′ measures the speed v′ of a particle moving to the right away from her. What speed v does the observer in S measure for the particle if (a) v′ = 0.400c; (b) v′ = 0.900c; (c) v′ = 0.990c?
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
35. Special Relativity
Lorentz Transformations
Problem 29
Textbook Question
In the old West, a marshal riding on a train traveling 35.0 m/s sees a duel between two men standing on the Earth 55.0 m apart parallel to the train. The marshal’s instruments indicate that in his reference frame the two men fired simultaneously.
(a) Which of the two men, the first one the train passes (A) or the second one (B) should be arrested for firing the first shot? That is, in the gunfighter’s frame of reference, who fired first?
(b) How much earlier did he fire?
(c) Who was struck first?

1
Step 1: Recognize that this problem involves the concept of relativity of simultaneity from Einstein's theory of special relativity. Events that are simultaneous in one reference frame may not be simultaneous in another frame moving relative to the first.
Step 2: Define the reference frames. The marshal is in the train's reference frame, moving at 35.0 m/s relative to the ground. The two gunfighters (A and B) are stationary on the ground. In the marshal's frame, the two gunfighters fire simultaneously, but we need to determine the sequence of events in the gunfighters' frame.
Step 3: Use the Lorentz transformation for time to calculate the time difference between the two events in the gunfighters' frame. The formula for time transformation is: , where γ is the Lorentz factor, v is the train's velocity, Δx is the spatial separation of the events, and c is the speed of light.
Step 4: Substitute the given values into the Lorentz transformation. The spatial separation Δx in the train's frame is 55.0 m (distance between the gunfighters), and the train's velocity v is 35.0 m/s. Since the events are simultaneous in the train's frame, Δt_train = 0. Calculate the time difference Δt_ground in the gunfighters' frame.
Step 5: Analyze the result of the time difference. If Δt_ground is positive, it means gunfighter A fired first in the gunfighters' frame. If Δt_ground is negative, gunfighter B fired first. Use this information to answer part (a). For part (b), the magnitude of Δt_ground gives how much earlier the first shot was fired. For part (c), consider the relative positions of the gunfighters and the train's motion to determine who was struck first.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
8mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Relativity of Simultaneity
The relativity of simultaneity is a concept from Einstein's theory of relativity, which states that events that are simultaneous in one reference frame may not be simultaneous in another. In this scenario, the marshal on the train perceives the two gunshots as simultaneous, but due to the train's motion, the timing of the shots will differ when viewed from the gunfighters' frame of reference on the ground.
Recommended video:
Guided course
Intro to Relative Motion (Relative Velocity)
Reference Frames
A reference frame is a perspective from which measurements are made, including time and space. In this problem, there are two reference frames: the marshal's moving frame on the train and the stationary frame of the two gunfighters. Understanding how events are perceived differently in these frames is crucial for determining who fired first and the timing of the shots.
Recommended video:
Guided course
Inertial Reference Frames
Time Dilation
Time dilation is a phenomenon predicted by relativity, where time is measured to be moving slower in a moving reference frame compared to a stationary one. While this concept is more relevant for high speeds close to the speed of light, it underlines the importance of understanding how time can be perceived differently in various frames, affecting the analysis of when the shots were fired in this scenario.
Recommended video:
Guided course
Time Dilation
Watch next
Master Lorentz Transformations of Position with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Textbook Question
697
views