A container filled with 2 mol of an ideal, monoatomic gas is has a total internal energy equal to the kinetic energy of a 0.008kg bullet travelling at 700 m/s. What is the temperature of the gas in Kelvin?
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
21. Kinetic Theory of Ideal Gases
Internal Energy of Gases
Problem 58b
Textbook Question
A 100 cm³ box contains helium at a pressure of 2.0 atm and a temperature of 100℃. It is placed in thermal contact with a 200 cm³ box containing argon at a pressure of 4.0 atm and a temperature of 400℃. What is the final thermal energy of each gas?

1
Step 1: Understand the problem. The final thermal energy of each gas depends on the final temperature after thermal equilibrium is reached. Since the two boxes are in thermal contact, energy will transfer between them until they reach the same temperature. Use the ideal gas law and the concept of thermal energy to solve this problem.
Step 2: Write the expression for the thermal energy of a gas. The thermal energy of an ideal gas is given by \( U = \frac{3}{2} nRT \), where \( n \) is the number of moles, \( R \) is the universal gas constant, and \( T \) is the temperature in Kelvin. Convert the given temperatures from Celsius to Kelvin using \( T(K) = T(°C) + 273.15 \).
Step 3: Use the ideal gas law \( PV = nRT \) to calculate the number of moles of each gas. For helium, \( n_{He} = \frac{P_{He}V_{He}}{RT_{He}} \), and for argon, \( n_{Ar} = \frac{P_{Ar}V_{Ar}}{RT_{Ar}} \). Ensure that the volumes are converted to cubic meters (1 cm³ = 1 × 10⁻⁶ m³) and pressures are in Pascals (1 atm = 101325 Pa).
Step 4: Determine the final temperature \( T_f \) after thermal equilibrium. Since no heat is lost to the surroundings, the total thermal energy of the system remains constant. Use the equation \( U_{initial, He} + U_{initial, Ar} = U_{final, He} + U_{final, Ar} \) to solve for \( T_f \). Substitute \( U = \frac{3}{2} nRT \) for each gas.
Step 5: Calculate the final thermal energy of each gas using \( U_{final} = \frac{3}{2} nRT_f \). Use the values of \( n \) for helium and argon, the universal gas constant \( R \), and the final temperature \( T_f \) obtained in the previous step. This will give the final thermal energy for each gas.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
16mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Thermal Energy
Thermal energy refers to the total kinetic energy of the particles in a substance due to their motion. It is directly related to temperature, as higher temperatures indicate greater particle motion and, consequently, higher thermal energy. The thermal energy of an ideal gas can be calculated using the formula E = (3/2)nRT, where n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.
Recommended video:
Guided course
Volume Thermal Expansion
Ideal Gas Law
The Ideal Gas Law is a fundamental equation in thermodynamics that describes the relationship between pressure (P), volume (V), temperature (T), and the number of moles (n) of an ideal gas. It is expressed as PV = nRT. This law allows us to calculate the state of a gas under various conditions and is essential for understanding how changes in one variable affect the others.
Recommended video:
Guided course
Ideal Gases and the Ideal Gas Law
Heat Transfer
Heat transfer is the process by which thermal energy moves from one object or substance to another due to a temperature difference. In this scenario, the thermal contact between the helium and argon boxes will lead to heat exchange until thermal equilibrium is reached. Understanding heat transfer mechanisms, such as conduction, convection, and radiation, is crucial for analyzing how the final thermal energy of each gas will be determined.
Recommended video:
Guided course
Overview of Heat Transfer
Watch next
Master Internal Energy of Ideal Monoatomic Gases with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
805
views
3
rank