(II) A thin, hollow 0.545-kg section of pipe of radius 12.0 cm starts rolling (from rest) down a 17.5° incline 5.60 m long. If the pipe rolls without slipping, what will be its speed at the base of the incline?
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
13. Rotational Inertia & Energy
Conservation of Energy in Rolling Motion
Problem 78a
Textbook Question
(III) A wheel with rotational inertia I = (1/2)MR² about its horizontal central axle is set spinning with initial angular speed ω₀. It is then lowered, and at the instant its edge touches the ground the speed of the axle (and cm) is zero. Initially the wheel slips when it touches the ground, but then begins to move forward and eventually rolls without slipping. In what direction does friction act on the slipping wheel?

1
Understand the problem: The wheel initially has an angular speed \( \omega_0 \) and no translational motion. When it touches the ground, friction acts to change both its rotational and translational motion until it rolls without slipping. We need to determine the direction of the frictional force during the slipping phase.
Recall the condition for rolling without slipping: For a wheel to roll without slipping, the linear velocity \( v \) of its center of mass and the tangential velocity at the edge due to rotation must satisfy \( v = R \omega \), where \( R \) is the radius of the wheel and \( \omega \) is the angular velocity.
Analyze the initial state: When the wheel first touches the ground, the center of mass has no velocity (\( v = 0 \)), but the edge of the wheel in contact with the ground has a tangential velocity of \( R \omega_0 \) relative to the center of mass. This means the wheel is slipping, and the relative motion at the contact point is backward (opposite to the direction the wheel would roll).
Determine the direction of friction: Friction opposes the relative motion at the contact point. Since the edge of the wheel is moving backward relative to the ground, the frictional force must act forward (in the direction the wheel will eventually roll) to reduce the slipping and bring the wheel to a rolling motion.
Summarize the role of friction: The forward frictional force not only reduces the slipping but also provides a torque that decreases the angular velocity \( \omega \) and increases the translational velocity \( v \) of the center of mass. This continues until the condition \( v = R \omega \) is satisfied, at which point the wheel rolls without slipping.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Rotational Inertia
Rotational inertia, or moment of inertia, quantifies an object's resistance to changes in its rotational motion. It depends on the mass distribution relative to the axis of rotation. For a solid disk, the formula I = (1/2)MR² indicates that the inertia increases with both mass (M) and the square of the radius (R). Understanding this concept is crucial for analyzing how the wheel behaves when subjected to external forces.
Recommended video:
Guided course
Intro to Moment of Inertia
Friction and Motion
Friction is the force that opposes the relative motion between two surfaces in contact. In the context of the wheel, when it first touches the ground and begins to slip, static friction is not yet in play, and kinetic friction acts to oppose the slipping motion. As the wheel transitions to rolling without slipping, the direction of friction changes, playing a key role in determining the wheel's acceleration and direction of motion.
Recommended video:
Guided course
Kinetic Friction Problems
Rolling Without Slipping
Rolling without slipping occurs when the point of contact between a rolling object and the surface is momentarily at rest relative to the surface. This condition implies a specific relationship between the translational speed of the center of mass and the angular speed of the object. Understanding this concept is essential for determining the direction of friction when the wheel transitions from slipping to rolling, as it dictates how forces interact at the contact point.
Recommended video:
Guided course
Rolling Motion (Free Wheels)
Watch next
Master Conservation of Energy in Rolling Motion with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Textbook Question
474
views