A very large, horizontal, nonconducting sheet of charge has uniform charge per unit area C/m2. A small sphere of mass kg and charge is placed cm above the sheet of charge and then released from rest. What is if the sphere is released cm above the sheet?
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
24. Electric Force & Field; Gauss' Law
Gauss' Law
Problem 40a
Textbook Question
A very long conducting tube (hollow cylinder) has inner radius A and outer radius b. It carries charge per unit length +α, where is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length. Calculate the electric field in terms of and the distance from the axis of the tube for (i) ; (ii) ; (iii) . Show your results in a graph of as a function of .

1
Step 1: Understand the problem setup. We have a hollow conducting cylinder with inner radius A and outer radius B, carrying a charge per unit length +α. Additionally, there is a line of charge along the axis of the tube with the same charge per unit length +α. We need to find the electric field at different regions: inside the inner radius, between the inner and outer radius, and outside the outer radius.
Step 2: Apply Gauss's Law to find the electric field for r < A. Since the line of charge is along the axis, consider a cylindrical Gaussian surface of radius r and length L inside the inner radius. The enclosed charge is the line charge, which is αL. Using Gauss's Law, \( \Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{enc}}{\varepsilon_0} \), where \( Q_{enc} = \alpha L \). The electric field \( E \) is radial and constant over the surface, so \( E(2\pi rL) = \frac{\alpha L}{\varepsilon_0} \). Solve for \( E \) to get \( E = \frac{\alpha}{2\pi \varepsilon_0 r} \).
Step 3: Determine the electric field for A < r < B. In this region, the Gaussian surface encloses both the line charge and the charge on the inner surface of the cylinder. The inner surface of the cylinder has a charge per unit length of -α to ensure the cylinder is neutral overall. Thus, the enclosed charge is zero, leading to \( E = 0 \) in this region.
Step 4: Calculate the electric field for r > B. Here, the Gaussian surface encloses the line charge and the entire cylinder, which has a net charge of +α per unit length. The enclosed charge is \( 2\alpha L \). Using Gauss's Law, \( E(2\pi rL) = \frac{2\alpha L}{\varepsilon_0} \). Solve for \( E \) to get \( E = \frac{2\alpha}{2\pi \varepsilon_0 r} = \frac{\alpha}{\pi \varepsilon_0 r} \).
Step 5: Graph the electric field E as a function of r. For r < A, the electric field decreases as \( \frac{1}{r} \). For A < r < B, the electric field is zero. For r > B, the electric field decreases as \( \frac{1}{r} \) but with a different coefficient. This graph will show discontinuities at r = A and r = B, reflecting the changes in enclosed charge.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
6mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Gauss's Law
Gauss's Law relates the electric flux through a closed surface to the charge enclosed by that surface. It is essential for calculating electric fields in symmetric charge distributions, such as cylindrical geometries. The law states that the total electric flux is equal to the enclosed charge divided by the permittivity of free space, allowing us to determine the electric field at various distances from the axis.
Recommended video:
Guided course
Gauss' Law
Electric Field in Cylindrical Coordinates
In cylindrical coordinates, the electric field due to a line of charge or a charged cylinder is radially symmetric. The field depends on the radial distance from the axis and is calculated using Gauss's Law. For a line of charge, the field decreases with distance, while for a charged cylinder, it varies based on the region considered (inside, between, or outside the cylinder).
Recommended video:
Guided course
Intro to Electric Fields
Superposition Principle
The superposition principle states that the total electric field due to multiple charges is the vector sum of the fields due to each charge individually. In this problem, the field at any point is the sum of the field due to the line of charge and the field due to the charged tube. This principle is crucial for determining the net electric field in regions where multiple charge distributions are present.
Recommended video:
Guided course
Superposition of Sinusoidal Wave Functions
Related Videos
Related Practice
Textbook Question
654
views