Multiple ChoiceIdentify the most helpful first step in verifying the identity.sec3θ=secθ+tan2θcosθ\sec^3\theta=\sec\theta+\frac{\tan^2\theta}{\cos\theta}sec3θ=secθ+cosθtan2θ141views2rank
Multiple ChoiceIdentify the most helpful first step in verifying the identity.(tan2θsin2θ−1)=sec2θsin2(−θ)\left(\frac{\tan^2\theta}{\sin^2\theta}-1\right)=\sec^2\theta\sin^2\left(-\theta\right)(sin2θtan2θ−1)=sec2θsin2(−θ)154views4rank
Multiple ChoiceUse the even-odd identities to evaluate the expression.cos(−θ)−cosθ\cos\left(-\theta\right)-\cos\thetacos(−θ)−cosθ238views9rank
Multiple ChoiceUse the even-odd identities to evaluate the expression.−cot(θ)⋅sin(−θ)-\cot\left(\theta\right)\cdot\sin\left(-\theta\right)−cot(θ)⋅sin(−θ)204views11rank
Multiple ChoiceSelect the expression with the same value as the given expression.sin(−38°)\sin\left(-38\degree\right)sin(−38°)216views8rank
Multiple ChoiceUse the Pythagorean identities to rewrite the expression as a single term.(1+cscθ)(1−cscθ)\left(1+\csc\theta\right)\left(1-\csc\theta\right)(1+cscθ)(1−cscθ)208views10rank
Multiple ChoiceUse the Pythagorean identities to rewrite the expression with no fraction.11−secθ\frac{1}{1-\sec\theta}1−secθ1159views4rank
Multiple ChoiceSimplify the expression.tan2θ−sec2θ+1\tan^2\theta-\sec^2\theta+1tan2θ−sec2θ+1182views3rank