Which of the following is key to generating a bell curve in statistics?
Table of contents
- 1. Intro to Stats and Collecting Data1h 14m
- 2. Describing Data with Tables and Graphs1h 55m
- 3. Describing Data Numerically2h 5m
- 4. Probability2h 16m
- 5. Binomial Distribution & Discrete Random Variables3h 6m
- 6. Normal Distribution and Continuous Random Variables2h 11m
- 7. Sampling Distributions & Confidence Intervals: Mean3h 23m
- Sampling Distribution of the Sample Mean and Central Limit Theorem19m
- Distribution of Sample Mean - Excel23m
- Introduction to Confidence Intervals15m
- Confidence Intervals for Population Mean1h 18m
- Determining the Minimum Sample Size Required12m
- Finding Probabilities and T Critical Values - Excel28m
- Confidence Intervals for Population Means - Excel25m
- 8. Sampling Distributions & Confidence Intervals: Proportion1h 25m
- 9. Hypothesis Testing for One Sample3h 57m
- 10. Hypothesis Testing for Two Samples4h 50m
- Two Proportions1h 13m
- Two Proportions Hypothesis Test - Excel28m
- Two Means - Unknown, Unequal Variance1h 3m
- Two Means - Unknown Variances Hypothesis Test - Excel12m
- Two Means - Unknown, Equal Variance15m
- Two Means - Unknown, Equal Variances Hypothesis Test - Excel9m
- Two Means - Known Variance12m
- Two Means - Sigma Known Hypothesis Test - Excel21m
- Two Means - Matched Pairs (Dependent Samples)42m
- Matched Pairs Hypothesis Test - Excel12m
- 11. Correlation1h 24m
- 12. Regression1h 50m
- 13. Chi-Square Tests & Goodness of Fit2h 21m
- 14. ANOVA1h 57m
3. Describing Data Numerically
Standard Deviation
Struggling with Statistics?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Given the data set , what is the standard deviation of the data? Round your answer to the nearest whole number.
A
B
C
D
Verified step by step guidance1
First, calculate the mean (average) of the data set. The mean \( \bar{x} \) is found by summing all the data points and dividing by the number of points: \( \bar{x} = \frac{65 + 75 + 100 + 130}{4} \).
Next, find the deviation of each data point from the mean by subtracting the mean from each value: \( (x_i - \bar{x}) \) for each \( x_i \) in the data set.
Then, square each of these deviations to get \( (x_i - \bar{x})^2 \). This step ensures all values are positive and emphasizes larger deviations.
Calculate the variance by finding the average of these squared deviations. Since this is a sample, divide the sum of squared deviations by \( n - 1 \) (where \( n \) is the number of data points): \( s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1} \).
Finally, take the square root of the variance to get the standard deviation: \( s = \sqrt{s^2} \). This gives a measure of spread in the original units of the data.
Watch next
Master Calculating Standard Deviation with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
3
views
Standard Deviation practice set

