Here are the essential concepts you must grasp in order to answer the question correctly.
Normal Approximation to the Binomial Distribution
The normal approximation to the binomial distribution is applicable when certain conditions are met, specifically when both np and n(1-p) are greater than or equal to 5. This allows the binomial distribution, which is discrete, to be approximated by a normal distribution, which is continuous, facilitating easier calculations for probabilities and hypothesis testing.
Recommended video:
Using the Normal Distribution to Approximate Binomial Probabilities
Hypothesis Testing
Hypothesis testing is a statistical method used to make decisions about a population based on sample data. It involves formulating a null hypothesis (H0) and an alternative hypothesis (H1), then using sample statistics to determine whether to reject H0 in favor of H1, based on a predetermined significance level (α). In this case, the claim about the population proportion is being tested.
Recommended video:
Sample Proportion (p_hat)
The sample proportion (p_hat) is the ratio of the number of successes in a sample to the total number of observations in that sample. It serves as an estimate of the population proportion (p). In this scenario, p_hat = 0.03 indicates that 3% of the sample exhibited the characteristic of interest, which is crucial for evaluating the claim regarding the population proportion.
Recommended video:
Sampling Distribution of Sample Proportion