Here are the essential concepts you must grasp in order to answer the question correctly.
Complex Numbers
Complex numbers are numbers that have a real part and an imaginary part, expressed in the form a + bi, where 'a' is the real part and 'b' is the imaginary part. In this context, the complex number -3 can be represented as -3 + 0i, indicating that it lies on the real axis of the complex plane.
Recommended video:
Polar Form of Complex Numbers
The polar form of a complex number expresses it in terms of its magnitude (or modulus) and angle (or argument). It is represented as r(cos θ + i sin θ) or r e^(iθ), where r is the distance from the origin to the point in the complex plane, and θ is the angle formed with the positive real axis. For -3, the polar form can be calculated using its modulus and argument.
Recommended video:
Complex Numbers In Polar Form
Magnitude and Argument
The magnitude of a complex number is the distance from the origin to the point in the complex plane, calculated using the formula r = √(a² + b²). The argument is the angle formed with the positive real axis, which can be found using the arctangent function. For the complex number -3, the magnitude is 3, and the argument is π radians (or 180 degrees), as it lies on the negative real axis.
Recommended video:
Finding Magnitude of a Vector