True or false: If and has initial point & terminal point , then .
Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
8. Vectors
Vectors in Component Form
Struggling with Trigonometry?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
If vectors v⃗=⟨4,1⟩, u⃗=⟨−8,3⟩, and w⃗=⟨−2,−1⟩, calculate w⃗−3(v⃗+u⃗).
A
⟨10,13⟩
B
⟨−14,13⟩
C
⟨−14,−13⟩
D
⟨10,−13⟩

1
Start by calculating the sum of vectors \( \mathbf{v} \) and \( \mathbf{u} \). Add the corresponding components: \( \mathbf{v} = \langle 4, 1 \rangle \) and \( \mathbf{u} = \langle -8, 3 \rangle \). The sum is \( \mathbf{v} + \mathbf{u} = \langle 4 + (-8), 1 + 3 \rangle = \langle -4, 4 \rangle \).
Next, multiply the resulting vector \( \langle -4, 4 \rangle \) by 3. This involves multiplying each component by 3: \( 3 \times \langle -4, 4 \rangle = \langle 3 \times (-4), 3 \times 4 \rangle = \langle -12, 12 \rangle \).
Now, calculate \( \mathbf{w} - 3(\mathbf{v} + \mathbf{u}) \). Start with vector \( \mathbf{w} = \langle -2, -1 \rangle \) and subtract \( \langle -12, 12 \rangle \) from it. Subtract the corresponding components: \( \langle -2, -1 \rangle - \langle -12, 12 \rangle = \langle -2 - (-12), -1 - 12 \rangle \).
Simplify the subtraction: \( \langle -2 - (-12), -1 - 12 \rangle = \langle -2 + 12, -1 - 12 \rangle = \langle 10, -13 \rangle \).
The final result of the vector operation \( \mathbf{w} - 3(\mathbf{v} + \mathbf{u}) \) is \( \langle 10, -13 \rangle \).
Watch next
Master Position Vectors & Component Form with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Multiple Choice
270
views
Vectors in Component Form practice set
