Here are the essential concepts you must grasp in order to answer the question correctly.
Simple Harmonic Motion (SHM)
Simple Harmonic Motion is a type of periodic motion where an object moves back and forth around an equilibrium position. The motion can be described by a sinusoidal function, such as sine or cosine, which captures the oscillatory nature of the movement. In this context, the displacement equation indicates how far the object is from its equilibrium position at any given time.
Recommended video:
Products of Complex Numbers in Polar Form
Maximum Displacement
Maximum displacement, also known as amplitude, refers to the greatest distance the object moves from its equilibrium position during its oscillation. In the given equation, the coefficient of the cosine function indicates the amplitude. For the equation d = -8 cos(π/2 t), the maximum displacement is 8 inches, as it represents the peak value of the oscillation.
Frequency and Period
Frequency is the number of cycles an object completes in one second, while the period is the time taken to complete one full cycle. These two concepts are inversely related; frequency (f) is the reciprocal of the period (T), expressed as f = 1/T. In the given equation, the angular frequency can be derived from the coefficient of t in the cosine function, allowing for the calculation of both frequency and period.
Recommended video:
Period of Sine and Cosine Functions