Multiple ChoiceSelect the expression with the same value as the given expression.sec(−4π5)\sec\left(-\frac{4\pi}{5}\right)sec(−54π)510views
Multiple ChoiceSelect the expression with the same value as the given expression.sin(−38°)\sin\left(-38\degree\right)sin(−38°) 499views
Multiple ChoiceUse the Pythagorean identities to rewrite the expression as a single term.(1+cscθ)(1−cscθ)\left(1+\csc\theta\right)\left(1-\csc\theta\right)(1+cscθ)(1−cscθ) 538views
Multiple ChoiceUse the Pythagorean identities to rewrite the expression with no fraction.11−secθ\frac{1}{1-\sec\theta}1−secθ1590views5rank
Multiple ChoiceSimplify the expression.tan(−θ)sec(−θ)\frac{\tan\left(-\theta\right)}{\sec\left(-\theta\right)}sec(−θ)tan(−θ) 509views1rank
Multiple ChoiceSimplify the expression.(tan2θsin2θ−1)csc2(θ)cos2(−θ)\left(\frac{\tan^2\theta}{\sin^2\theta}-1\right)\csc^2\left(\theta\right)\cos^2\left(-\theta\right)(sin2θtan2θ−1)csc2(θ)cos2(−θ) 412views1rank
Multiple ChoiceIdentify the most helpful first step in verifying the identity.(tan2θsin2θ−1)=sec2θsin2(−θ)\left(\frac{\tan^2\theta}{\sin^2\theta}-1\right)=\sec^2\theta\sin^2\left(-\theta\right)(sin2θtan2θ−1)=sec2θsin2(−θ) 530views
Multiple ChoiceIdentify the most helpful first step in verifying the identity.sec3θ=secθ+tan2θcosθ\sec^3\theta=\sec\theta+\frac{\tan^2\theta}{\cos\theta}sec3θ=secθ+cosθtan2θ 458views