Table of contents
- 1. Introduction to Statistics53m
- 2. Describing Data with Tables and Graphs2h 2m
- 3. Describing Data Numerically2h 8m
- 4. Probability2h 26m
- 5. Binomial Distribution & Discrete Random Variables3h 28m
- 6. Normal Distribution & Continuous Random Variables2h 21m
- 7. Sampling Distributions & Confidence Intervals: Mean3h 37m
- Sampling Distribution of the Sample Mean and Central Limit Theorem19m
- Distribution of Sample Mean - ExcelBonus23m
- Introduction to Confidence Intervals22m
- Confidence Intervals for Population Mean1h 26m
- Determining the Minimum Sample Size Required12m
- Finding Probabilities and T Critical Values - ExcelBonus28m
- Confidence Intervals for Population Means - ExcelBonus25m
- 8. Sampling Distributions & Confidence Intervals: Proportion2h 20m
- 9. Hypothesis Testing for One Sample5h 15m
- Steps in Hypothesis Testing1h 13m
- Performing Hypothesis Tests: Means1h 1m
- Hypothesis Testing: Means - ExcelBonus42m
- Performing Hypothesis Tests: Proportions39m
- Hypothesis Testing: Proportions - ExcelBonus27m
- Performing Hypothesis Tests: Variance12m
- Critical Values and Rejection Regions29m
- Link Between Confidence Intervals and Hypothesis Testing12m
- Type I & Type II Errors16m
- 10. Hypothesis Testing for Two Samples5h 35m
- Two Proportions1h 12m
- Two Proportions Hypothesis Test - ExcelBonus28m
- Two Means - Unknown, Unequal Variance1h 2m
- Two Means - Unknown Variances Hypothesis Test - ExcelBonus12m
- Two Means - Unknown, Equal Variance15m
- Two Means - Unknown, Equal Variances Hypothesis Test - ExcelBonus9m
- Two Means - Known Variance12m
- Two Means - Sigma Known Hypothesis Test - ExcelBonus21m
- Two Means - Matched Pairs (Dependent Samples)42m
- Matched Pairs Hypothesis Test - ExcelBonus12m
- Two Variances and F Distribution29m
- Two Variances - Graphing CalculatorBonus15m
- 11. Correlation1h 24m
- 12. Regression3h 42m
- Linear Regression & Least Squares Method26m
- Residuals12m
- Coefficient of Determination12m
- Regression Line Equation and Coefficient of Determination - ExcelBonus8m
- Finding Residuals and Creating Residual Plots - ExcelBonus11m
- Inferences for Slope32m
- Enabling Data Analysis ToolpakBonus1m
- Regression Readout of the Data Analysis Toolpak - ExcelBonus21m
- Prediction Intervals13m
- Prediction Intervals - ExcelBonus19m
- Multiple Regression - ExcelBonus29m
- Quadratic Regression23m
- Quadratic Regression - ExcelBonus10m
- 13. Chi-Square Tests & Goodness of Fit2h 31m
- 14. ANOVA2h 32m
7. Sampling Distributions & Confidence Intervals: Mean
Introduction to Confidence Intervals
Multiple Choice
Find the critical value, z2α, for an 80% confidence interval.
A
0.10
B
1.282
C
0.40
D
0.90
0 Comments
Verified step by step guidance1
Identify the confidence level for the interval, which is 80%. This means that the level of significance, \( \alpha \), is 20% or 0.20.
Since the confidence interval is two-tailed, divide the level of significance by 2 to find \( \frac{\alpha}{2} \). So, \( \frac{\alpha}{2} = \frac{0.20}{2} = 0.10 \).
Determine the critical value \( z_{\frac{\alpha}{2}} \) using the standard normal distribution table or a calculator. This value corresponds to the point where the cumulative probability is \( 1 - \frac{\alpha}{2} = 0.90 \).
Look up the cumulative probability of 0.90 in the standard normal distribution table to find the \( z \)-score. This \( z \)-score is the critical value \( z_{\frac{\alpha}{2}} \).
Verify the critical value by checking that it matches the expected value for an 80% confidence interval, which is approximately 1.282.
Related Videos
Related Practice
Multiple Choice
Which of the following best describes the purpose of a confidence interval in statistics?
98
views

