Textbook Question48. Integral of sec³x Use integration by parts to show that:∫ sec³x dx = (1/2) secx tanx + (1/2) ∫ secx dx
Textbook Question49. Explain why or why not Determine whether the following statements are true and give an explanation or counterexample:c. ∫ v du = u·v - ∫ u dv
Textbook Question50-53. Reduction Formulas Use integration by parts to derive the following reduction formulas:51. ∫ xⁿ cos(ax) dx = (xⁿ sin(ax))/a - (n/a) ∫ xⁿ⁻¹ sin(ax) dx, for a ≠ 0
Textbook Question50-53. Reduction Formulas Use integration by parts to derive the following reduction formulas:53. ∫ lnⁿ(x) dx = x lnⁿ(x) - n ∫ lnⁿ⁻¹(x) dx
Textbook Question58. Two Methods Evaluate ∫(from 0 to π/3) sin(x) · ln(cos(x)) dx in the following two ways:b. Use substitution.
Textbook Question60. Two Methodsa. Evaluate ∫(x · ln(x²)) dx using the substitution u = x² and evaluating ∫(ln(u)) du.
Textbook Question62. Two integration methods Evaluate ∫ sin x cos x dx using integration by parts. Then evaluate the integral using a substitution. Reconcile your answers