Textbook QuestionFunction defined by an integral Let H (𝓍) = ∫₀ˣ √(4 ― t²) dt, for ― 2 ≤ 𝓍 ≤ 2.(c) Evaluate H '(2) .10views
Textbook QuestionLimits with integrals Evaluate the following limits.lim ∫₂ˣ eᵗ² dt𝓍→2 ---------------𝓍 ― 28views
Textbook QuestionFunction defined by an integral Let ƒ(𝓍) = ∫₀ˣ (t ― 1)¹⁵ (t―2)⁹ dt .(c) For what values of 𝓍 does ƒ have local minima? Local maxima?6views
Textbook QuestionIntegrals with sin² 𝓍 and cos² 𝓍 Evaluate the following integrals. ∫₀^π/⁴ cos² 8θ dθ5views
Textbook QuestionDefinite integrals Evaluate the following integrals using the Fundamental Theorem of Calculus. Sketch the graph of the integrand and shade the region whose net area you have found. ∫₀⁵ (𝓍²―9) d𝓍 5views
Textbook QuestionExplain why or why not Determine whether the following statements are true and give an explanation or counterexample. (b) Suppose ƒ is a negative increasing function, for 𝓍 > 0 . Then the area function A(𝓍) = ∫₀ˣ ƒ(t) dt is a decreasing function of 𝓍 .6views
Multiple ChoiceGiven the definite integral F(x)=∫3x[t8−sin(t4)]dtF\left(x\right)=\int_3^{x}\!\left\lbrack t^8-\sin\left(t^4\right)\right\rbrack\,dt , find the derivative F′(x)F^{\prime}\left(x\right).31views1rank
Multiple ChoiceGiven the definite integral F(x)=∫1220x(h4+63hh5)dhF\left(x\right)=\int_{12}^{20x}\!\left(h^4+\frac{63h}{\sqrt{h^5}}\right)\,dhF(x)=∫1220x(h4+h563h)dh, find the derivative F′(x)F^{\prime}\left(x\right)F′(x).43views1rank