Determine the following limits.
a. lim z→3^+ (z − 1)(z − 2) / (z − 3)
Determine the following limits.
a. lim z→3^+ (z − 1)(z − 2) / (z − 3)
The graph of ℎ in the figure has vertical asymptotes at x=−2 and x=3. Analyze the following limits. <IMAGE>
lim x→−2 h(x)
Determine the following limits.
a. lim x→−2^+ (x − 4) / x(x + 2)
Determine the following limits.
b. lim x→−2^− (x − 4) / x(x + 2)
Determine the following limits.
c. lim x→−2 (x − 4) / x(x + 2)
Determine the following limits.
a. lim x→2^+ x^2 − 4x + 3 / (x − 2)^2
Determine the following limits.
b. lim t→−2^− t^3 − 5t^2 + 6t / t^4 − 4t^2
Find all vertical asymptotes of the following functions. For each value of , determine , , and .
Find all vertical asymptotes of the following functions. For each value of , determine , , and .
Explain the meaning of lim x→a f(x) =∞.
Use the graph of f(x) = x / (x2 − 2x − 3)2 to determine lim x→−1 f(x) and lim x→3 f(x).
Analyze the following limits and find the vertical asymptotes of f(x) = (x − 5) / (x2 − 25).
lim x → -5- f(x)
Analyze the following limits and find the vertical asymptotes of f(x) =(x − 5) / (x2 − 25).
lim x→−5+ f(x)
Analyze the following limits and find the vertical asymptotes of f(x) = (x + 7) / (x4 − 49x2).
lim x → -7 f(x)
Analyze the following limits and find the vertical asymptotes of f(x) = (x + 7) / (x4 − 49x2).
lim x→0 f(x)