Use Table 5.6 to evaluate the following indefinite integrals.
(a) β« eΒΉβ°Λ£ dπ
Use Table 5.6 to evaluate the following indefinite integrals.
(a) β« eΒΉβ°Λ£ dπ
Use a substitution of the form u = aπ + b to evaluate the following indefinite integrals
β«(eΒ³Λ£ βΊΒΉ dπ
Use a substitution of the form u = aπ + b to evaluate the following indefinite integrals.
β«(π + 1)ΒΉΒ² dπ
Use the given substitution to evaluate the following indefinite integrals. Check your answer by differentiating.
β« (6π + 1) β(3πΒ² + π) dπ , u = 3πΒ² + π
Use Table 5.6 to evaluate the following indefinite integrals.
(f) β« dπ/β36 βπΒ²
Use Table 5.6 to evaluate the following indefinite integrals.
(e) β« dπ/(81 + 9πΒ²) (Hint: Factor a 9 out of the denominator first.)
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« 2π(πΒ² β 1)βΉβΉ dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« πeΛ£Β² dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« [ 1/(10πβ3) dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« πΒ³ (πβ΄ + 16)βΆ dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« (πβΆ β 3πΒ²)β΄ (πβ΅ β π) dπ
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
β« dπ / (β1 β 9πΒ²)
Variations on the substitution method Evaluate the following integrals.
β« π/(βπβ4) dπ
Variations on the substitution method Evaluate the following integrals.
β« yΒ²/(y + 1)β΄ dy
2β74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
3. β« (3x)/β(x + 4) dx