9-34. Shell method Let R be the region bounded by the following curves. Use the shell method to find the volume of the solid generated when R is revolved about indicated axis.
y = x³−x⁸+1,y=1; about the y-axis
9-34. Shell method Let R be the region bounded by the following curves. Use the shell method to find the volume of the solid generated when R is revolved about indicated axis.
y = x³−x⁸+1,y=1; about the y-axis
9-34. Shell method Let R be the region bounded by the following curves. Use the shell method to find the volume of the solid generated when R is revolved about indicated axis.
{Use of Tech} y² = ln x,y² = ln x³, and y=2; about the x-axis
35–38. Shell and washer methods Let R be the region bounded by the following curves. Use both the shell method and the washer method to find the volume of the solid generated when R is revolved about the indicated axis.
y = 8,y = 2x+2,x = 0, and x=2; about the y-axis
35–38. Shell and washer methods Let R be the region bounded by the following curves. Use both the shell method and the washer method to find the volume of the solid generated when R is revolved about the indicated axis.
y = (x−2)³ −2,x=0, and y=25; about the y-axis
39–44. Shell method about other lines Let R be the region bounded by y = x²,x=1, and y=0. Use the shell method to find the volume of the solid generated when R is revolved about the following lines.
x =2
39–44. Shell method about other lines Let R be the region bounded by y = x²,x=1, and y=0. Use the shell method to find the volume of the solid generated when R is revolved about the following lines.
y = -2
45–48. Shell and washer methods about other lines Use both the shell method and the washer method to find the volume of the solid that is generated when the region in the first quadrant bounded by y = x²,y=1, and x=0 is revolved about the following lines.
x = -1
39–44. Shell method about other lines Let R be the region bounded by y = x²,x=1, and y=0. Use the shell method to find the volume of the solid generated when R is revolved about the following lines.
y = 2
Let R be the region bounded by the following curves. Find the volume of the solid generated when R is revolved about the given axis.
y=x^2,y=2−x, and y=0; about the y-axis
Function defined as an integral Write the integral that gives the length of the curve y = f(x) = ∫₀^x sin t dt on the interval [0,π]
Lengths of symmetric curves Suppose a curve is described by y=f(x) on the interval [−b, b], where f′ is continuous on [−b, b]. Show that if f is odd or f is even, then the length of the curve y=f(x) from x=−b to x=b is twice the length of the curve from x=0 to x=b. Use a geometric argument and prove it using integration.
58–61. Arc length Find the length of the following curves.
y = 2x+4 on [−2,2] (Use calculus.)
Volume of a sphere Let R be the region bounded by the upper half of the circle x²+y² = r² and the x-axis. A sphere of radius r is obtained by revolving R about the x-axis.
a. Use the shell method to verify that the volume of a sphere of radius r is 4/3 πr³.
Volume of a sphere Let R be the region bounded by the upper half of the circle x²+y² = r² and the x-axis. A sphere of radius r is obtained by revolving R about the x-axis.
b. Repeat part (a) using the disk method.
Surface area and volume Let f(x) = 1/3 x³ and let R be the region bounded by the graph of f and the x-axis on the interval [0, 2].
b. Find the volume of the solid generated when R is revolved about the y-axis.