Here are the essential concepts you must grasp in order to answer the question correctly.
Linear Inequalities
Linear inequalities are mathematical expressions that involve a linear function and an inequality sign (such as <, >, ≤, or ≥). They define a region on a graph where the solutions to the inequality exist. In this context, the inequalities represent constraints that limit the feasible solutions for the variables x and y.
Recommended video:
Graphing Systems of Inequalities
Graphing systems of inequalities involves plotting each inequality on a coordinate plane to visualize the feasible region where all constraints are satisfied. The solution set is typically the intersection of the regions defined by each inequality, and it is important to shade the appropriate areas to indicate where the solutions lie.
Recommended video:
Objective Function
An objective function is a mathematical expression that needs to be maximized or minimized, given certain constraints. In this case, the objective function z = 4x + 6y represents a linear relationship between the variables x and y, and the goal is to find the maximum value of z within the feasible region defined by the inequalities.
Recommended video:
Permutations of Non-Distinct Objects