Textbook QuestionSolve each equation. Give solutions in exact form. See Examples 5–9. log_3 [(x + 5)(x - 3)] = 2502views
Textbook QuestionSolve each logarithmic equation in Exercises 49–92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. log2(x+25)=4617views
Textbook QuestionSolve each equation. Give solutions in exact form. See Examples 5–9. log_2 [(2x + 8)(x + 4)] = 5415views
Textbook QuestionSolve each equation. Give solutions in exact form. See Examples 5–9. log_5 [(3x + 5)(x + 1)] = 1514views
Textbook QuestionSolve each logarithmic equation in Exercises 49–92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. log3(x+4)=−3564views
Textbook QuestionSolve each equation. Give solutions in exact form. See Examples 5–9. log(x + 25) = log(x + 10) + log 4362views
Textbook QuestionSolve each logarithmic equation in Exercises 49–92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. log4(3x+2)=3550views
Textbook QuestionSolve each equation. Give solutions in exact form. See Examples 5–9. log(3x + 5) - log(2x + 4) = 0504views
Textbook QuestionIn Exercises 60–63, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. (ln x)(ln 1) = 0583views
Textbook QuestionSolve each logarithmic equation in Exercises 49–92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 5 ln(2x)=20624views
Textbook QuestionIn Exercises 60–63, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. (log2 x)^4 = 4 log2 x558views
Textbook QuestionSolve each equation. Give solutions in exact form. See Examples 5–9. ln(7 - x) + ln(1 - x) = ln (25 - x)492views
Textbook QuestionSolve each logarithmic equation in Exercises 49–92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 6+2 ln x=5708views
Textbook QuestionIn Exercises 64–73, solve each exponential equation. Where necessary, express the solution set in terms of natural or common logarithms and use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. 2^(4x-2) = 64749views
Textbook QuestionSolve each logarithmic equation in Exercises 49–92. Be sure to reject any value of x that is not in the domain of the original logarithmic expressions. Give the exact answer. Then, where necessary, use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution. ln√x+3=1650views