A car engine whose output power is 145 hp operates at about 15% efficiency. Assume the engine’s water temperature of 85°C is its cold-temperature (exhaust) reservoir and 495°C is its thermal “intake” temperature (the temperature of the exploding gas–air mixture). What is the ratio of its efficiency relative to its maximum possible (Carnot) efficiency?
Table of contents
- 0. Math Review31m
- 1. Intro to Physics Units1h 29m
- 2. 1D Motion / Kinematics3h 56m
- Vectors, Scalars, & Displacement13m
- Average Velocity32m
- Intro to Acceleration7m
- Position-Time Graphs & Velocity26m
- Conceptual Problems with Position-Time Graphs22m
- Velocity-Time Graphs & Acceleration5m
- Calculating Displacement from Velocity-Time Graphs15m
- Conceptual Problems with Velocity-Time Graphs10m
- Calculating Change in Velocity from Acceleration-Time Graphs10m
- Graphing Position, Velocity, and Acceleration Graphs11m
- Kinematics Equations37m
- Vertical Motion and Free Fall19m
- Catch/Overtake Problems23m
- 3. Vectors2h 43m
- Review of Vectors vs. Scalars1m
- Introduction to Vectors7m
- Adding Vectors Graphically22m
- Vector Composition & Decomposition11m
- Adding Vectors by Components13m
- Trig Review24m
- Unit Vectors15m
- Introduction to Dot Product (Scalar Product)12m
- Calculating Dot Product Using Components12m
- Intro to Cross Product (Vector Product)23m
- Calculating Cross Product Using Components17m
- 4. 2D Kinematics1h 42m
- 5. Projectile Motion3h 6m
- 6. Intro to Forces (Dynamics)3h 22m
- 7. Friction, Inclines, Systems2h 44m
- 8. Centripetal Forces & Gravitation7h 26m
- Uniform Circular Motion7m
- Period and Frequency in Uniform Circular Motion20m
- Centripetal Forces15m
- Vertical Centripetal Forces10m
- Flat Curves9m
- Banked Curves10m
- Newton's Law of Gravity30m
- Gravitational Forces in 2D25m
- Acceleration Due to Gravity13m
- Satellite Motion: Intro5m
- Satellite Motion: Speed & Period35m
- Geosynchronous Orbits15m
- Overview of Kepler's Laws5m
- Kepler's First Law11m
- Kepler's Third Law16m
- Kepler's Third Law for Elliptical Orbits15m
- Gravitational Potential Energy21m
- Gravitational Potential Energy for Systems of Masses17m
- Escape Velocity21m
- Energy of Circular Orbits23m
- Energy of Elliptical Orbits36m
- Black Holes16m
- Gravitational Force Inside the Earth13m
- Mass Distribution with Calculus45m
- 9. Work & Energy1h 59m
- 10. Conservation of Energy2h 54m
- Intro to Energy Types3m
- Gravitational Potential Energy10m
- Intro to Conservation of Energy32m
- Energy with Non-Conservative Forces20m
- Springs & Elastic Potential Energy19m
- Solving Projectile Motion Using Energy13m
- Motion Along Curved Paths4m
- Rollercoaster Problems13m
- Pendulum Problems13m
- Energy in Connected Objects (Systems)24m
- Force & Potential Energy18m
- 11. Momentum & Impulse3h 40m
- Intro to Momentum11m
- Intro to Impulse14m
- Impulse with Variable Forces12m
- Intro to Conservation of Momentum17m
- Push-Away Problems19m
- Types of Collisions4m
- Completely Inelastic Collisions28m
- Adding Mass to a Moving System8m
- Collisions & Motion (Momentum & Energy)26m
- Ballistic Pendulum14m
- Collisions with Springs13m
- Elastic Collisions24m
- How to Identify the Type of Collision9m
- Intro to Center of Mass15m
- 12. Rotational Kinematics2h 59m
- 13. Rotational Inertia & Energy7h 4m
- More Conservation of Energy Problems54m
- Conservation of Energy in Rolling Motion45m
- Parallel Axis Theorem13m
- Intro to Moment of Inertia28m
- Moment of Inertia via Integration18m
- Moment of Inertia of Systems23m
- Moment of Inertia & Mass Distribution10m
- Intro to Rotational Kinetic Energy16m
- Energy of Rolling Motion18m
- Types of Motion & Energy24m
- Conservation of Energy with Rotation35m
- Torque with Kinematic Equations56m
- Rotational Dynamics with Two Motions50m
- Rotational Dynamics of Rolling Motion27m
- 14. Torque & Rotational Dynamics2h 5m
- 15. Rotational Equilibrium3h 39m
- 16. Angular Momentum3h 6m
- Opening/Closing Arms on Rotating Stool18m
- Conservation of Angular Momentum46m
- Angular Momentum & Newton's Second Law10m
- Intro to Angular Collisions15m
- Jumping Into/Out of Moving Disc23m
- Spinning on String of Variable Length20m
- Angular Collisions with Linear Motion8m
- Intro to Angular Momentum15m
- Angular Momentum of a Point Mass21m
- Angular Momentum of Objects in Linear Motion7m
- 17. Periodic Motion2h 9m
- 18. Waves & Sound3h 40m
- Intro to Waves11m
- Velocity of Transverse Waves21m
- Velocity of Longitudinal Waves11m
- Wave Functions31m
- Phase Constant14m
- Average Power of Waves on Strings10m
- Wave Intensity19m
- Sound Intensity13m
- Wave Interference8m
- Superposition of Wave Functions3m
- Standing Waves30m
- Standing Wave Functions14m
- Standing Sound Waves12m
- Beats8m
- The Doppler Effect7m
- 19. Fluid Mechanics4h 27m
- 20. Heat and Temperature3h 7m
- Temperature16m
- Linear Thermal Expansion14m
- Volume Thermal Expansion14m
- Moles and Avogadro's Number14m
- Specific Heat & Temperature Changes12m
- Latent Heat & Phase Changes16m
- Intro to Calorimetry21m
- Calorimetry with Temperature and Phase Changes15m
- Advanced Calorimetry: Equilibrium Temperature with Phase Changes9m
- Phase Diagrams, Triple Points and Critical Points6m
- Heat Transfer44m
- 21. Kinetic Theory of Ideal Gases1h 50m
- 22. The First Law of Thermodynamics1h 26m
- 23. The Second Law of Thermodynamics3h 11m
- 24. Electric Force & Field; Gauss' Law3h 42m
- 25. Electric Potential1h 51m
- 26. Capacitors & Dielectrics2h 2m
- 27. Resistors & DC Circuits3h 8m
- 28. Magnetic Fields and Forces2h 23m
- 29. Sources of Magnetic Field2h 30m
- Magnetic Field Produced by Moving Charges10m
- Magnetic Field Produced by Straight Currents27m
- Magnetic Force Between Parallel Currents12m
- Magnetic Force Between Two Moving Charges9m
- Magnetic Field Produced by Loops andSolenoids42m
- Toroidal Solenoids aka Toroids12m
- Biot-Savart Law (Calculus)18m
- Ampere's Law (Calculus)17m
- 30. Induction and Inductance3h 38m
- 31. Alternating Current2h 37m
- Alternating Voltages and Currents18m
- RMS Current and Voltage9m
- Phasors20m
- Resistors in AC Circuits9m
- Phasors for Resistors7m
- Capacitors in AC Circuits16m
- Phasors for Capacitors8m
- Inductors in AC Circuits13m
- Phasors for Inductors7m
- Impedance in AC Circuits18m
- Series LRC Circuits11m
- Resonance in Series LRC Circuits10m
- Power in AC Circuits5m
- 32. Electromagnetic Waves2h 14m
- 33. Geometric Optics2h 57m
- 34. Wave Optics1h 15m
- 35. Special Relativity2h 10m
23. The Second Law of Thermodynamics
Heat Engines & PV Diagrams
Problem 84
Textbook Question
The Brayton cycle, depicted in the PV diagram of Fig. 20–28, can describe a jet engine gas turbine. In process ab the air–fuel mixture undergoes an adiabatic compression. This is followed, in process bc, with an isobaric (constant pressure) heating, by combustion. Process cd is an adiabatic expansion with expulsion of the products to the atmosphere. The return step, da, takes place at constant pressure. If the working gas behaves like an ideal gas, show that the efficiency of the Brayton cycle is


1
Step 1: Understand the Brayton cycle. The Brayton cycle consists of four processes: (1) adiabatic compression (ab), (2) isobaric heating (bc), (3) adiabatic expansion (cd), and (4) isobaric cooling (da). The goal is to derive the efficiency formula for this cycle, assuming the working gas behaves as an ideal gas.
Step 2: Recall the efficiency formula for a heat engine. The efficiency (e) is defined as the ratio of the net work done by the engine to the heat input: e = 1 - (Q_out / Q_in). Here, Q_out is the heat rejected during the isobaric cooling process (da), and Q_in is the heat added during the isobaric heating process (bc).
Step 3: Use the ideal gas law and thermodynamic relations. For adiabatic processes (ab and cd), the relation between pressure and volume is given by P₁V₁^γ = P₂V₂^γ, where γ = C_p / C_v is the adiabatic index. For isobaric processes (bc and da), the heat transfer is related to the change in temperature: Q = nC_pΔT.
Step 4: Express the temperatures at key points in terms of pressure and volume. Using the ideal gas law (PV = nRT), relate the temperatures at points a, b, c, and d to the pressures and volumes. For example, T_a = (P_aV_a) / (nR), T_b = (P_bV_b) / (nR), and so on. Substitute these into the expressions for Q_in and Q_out.
Step 5: Derive the efficiency formula. Substitute the expressions for Q_in and Q_out into the efficiency formula. Simplify the terms using the adiabatic relations (P₁V₁^γ = P₂V₂^γ) to eliminate volumes. After simplification, the efficiency of the Brayton cycle is found to be e = 1 - (P_b / P_a)^(1-γ)/γ, where P_b and P_a are the pressures at points b and a, respectively.

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
10mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Brayton Cycle
The Brayton cycle is a thermodynamic cycle that describes the operation of gas turbine engines, commonly used in jet engines. It consists of four processes: adiabatic compression, isobaric heating, adiabatic expansion, and isobaric cooling. This cycle illustrates how energy is converted from fuel into mechanical work, emphasizing the importance of pressure and temperature changes throughout the cycle.
Recommended video:
Guided course
The Otto Cycle
Adiabatic Process
An adiabatic process is one in which no heat is exchanged with the surroundings. In the context of the Brayton cycle, both the compression and expansion processes are adiabatic, meaning that the temperature of the gas changes due to work done on or by the gas, rather than heat transfer. This concept is crucial for understanding how the gas behaves under varying pressures and volumes during the cycle.
Recommended video:
Guided course
Entropy & Ideal Gas Processes
Ideal Gas Behavior
Ideal gas behavior refers to the assumptions made about gases that allow them to be described by the ideal gas law (PV=nRT). In the Brayton cycle, assuming the working gas behaves as an ideal gas simplifies the analysis of the thermodynamic processes involved. This assumption is valid under many conditions, particularly at high temperatures and low pressures, and is essential for deriving the efficiency formula of the cycle.
Recommended video:
Guided course
Ideal Gases and the Ideal Gas Law
Watch next
Master Calculating Work in Heat Engines Using PV Diagrams with a bite sized video explanation from Patrick
Start learningRelated Videos
Related Practice
Textbook Question
383
views