Critical Values. In Exercises 41–44, find the indicated critical value. Round results to two decimal places.
z0.90
Critical Values. In Exercises 41–44, find the indicated critical value. Round results to two decimal places.
z0.90
Basis for the Range Rule of Thumb and the Empirical Rule. In Exercises 45–48, find the indicated area under the curve of the standard normal distribution; then convert it to a percentage and fill in the blank. The results form the basis for the range rule of thumb and the empirical rule introduced in Section 3-2.
About __ % of the area is between z = -3.5 and z = 3.5 (or within 3.5 standard deviation of the mean).
Significance For bone density scores that are normally distributed with a mean of 0 and a standard deviation of 1, find the percentage of scores that are
c. not significant (or less than 2 standard deviations away from the mean).
Hershey Kisses Based on Data Set 38 “Candies” in Appendix B, weights of the chocolate in Hershey Kisses are normally distributed with a mean of 4.5338 g and a standard deviation of 0.1039 g.
a. What are the values of the mean and standard deviation after converting all weights of Hershey Kisses to z scores using z = (x - μ)/σ ?
b. The original weights are in grams. What are the units of the corresponding z scores?
Hershey Kisses Based on Data Set 38 “Candies” in Appendix B, weights of the chocolate in Hershey Kisses are normally distributed with a mean of 4.5338 g and a standard deviation of 0.1039 g
b. What is the value of the median?
Hershey Kisses Based on Data Set 38 “Candies” in Appendix B, weights of the chocolate in Hershey Kisses are normally distributed with a mean of 4.5338 g and a standard deviation of 0.1039 g
d. What is the value of the variance?
Eye Color Based on a study by Dr. P. Sorita at Indiana University, assume that 12% of us have green eyes. In a study of 650 people, it is found that 86 of them have green eyes.
b. Is 86 people with green eyes significantly high?
Mendelian Genetics When Mendel conducted his famous genetics experiments with peas, one sample of offspring consisted of 929 peas, with 705 of them having red flowers. If we assume, as Mendel did, that under these circumstances, there is a 3/4 probability that a pea will have a red flower, we would expect that 696.75 (or about 697) of the peas would have red flowers, so the result of 705 peas with red flowers is more than expected.
a. If Mendel’s assumed probability is correct, find the probability of getting 705 or more peas with red flowers.
Bone Density Test A bone mineral density test is used to identify a bone disease. The result of a bone density test is commonly measured as a z score, and the population of z scores is normally distributed with a mean of 0 and a standard deviation of 1.
e. If the mean bone density test score is found for 9 randomly selected subjects, find the probability that the mean is greater than 0.23.
Birth Weights Based on Data Set 6 “Births” in Appendix B, birth weights of girls are normally distributed with a mean of 3037.1 g and a standard deviation of 706.3 g.
b. What is the value of the median?
Birth Weights Based on Data Set 6 “Births” in Appendix B, birth weights of girls are normally distributed with a mean of 3037.1 g and a standard deviation of 706.3 g.
c. What is the value of the mode?
Heights On the basis of Data Set 1 “Body Data” in Appendix B, assume that heights of men are normally distributed, with a mean of 68.6 in. and a standard deviation of 2.8 in.
[IMAGE]
a. The U.S. Coast Guard requires that men must have a height between 60 in. and 80 in. Find the percentage of men who satisfy that height requirement.
Mensa Membership in Mensa requires a score in the top 2% on a standard intelligence test. The Wechsler IQ test is designed for a mean of 100 and a standard deviation of 15, and scores are normally distributed.
a. Find the minimum Wechsler IQ test score that satisfies the Mensa requirement.
Mensa Membership in Mensa requires a score in the top 2% on a standard intelligence test. The Wechsler IQ test is designed for a mean of 100 and a standard deviation of 15, and scores are normally distributed.
b. If 4 randomly selected adults take the Wechsler IQ test, find the probability that their mean score is at least 131.
In Exercises 8 and 9, assume that women have standing eye heights that are normally distributed with a mean of 59.7 in. and a standard deviation of 2.5 in. (based on anthropometric survey data from Gordon, Churchill, et al.).
Significance Instead of using 0.05 for identifying significant values, use the criteria that a value x is significantly high if P(x or greater) ≤ 0.01 and a value is significantly low if P(x or less) ≤ 0.01. Find the standing eye heights of women that separate significant values from those that are not significant. Using these criteria, is a woman’s standing eye height of 67 in. significantly high?