Textbook Question29–62. Integrals Evaluate the following integrals. Include absolute values only when needed.∫₀^{π} 2^{sin x} · cos x dx
Textbook Question37–56. Integrals Evaluate each integral.∫₂₅²²⁵ dx / (x² + 25x) (Hint: √(x² + 25x) = √x √(x + 25).)
Textbook Question66. Integrating derivativesUse integration by parts to show that if f' is continuous on [a, b], then∫[a to b] f(x)f'(x) dx = (1/2)[f(b)² - f(a)²]
Textbook Question29–62. Integrals Evaluate the following integrals. Include absolute values only when needed.∫ₑᵉ^³ dx / (x ln x ln²(ln x))
Textbook Question63–68. Definite integrals Evaluate the following definite integrals. Use Theorem 7.7 to express your answer in terms of logarithms.∫₁/₈¹ dx/x√(1 + x²/³)
Multiple ChoiceEvaluate the indefinite integral.∫1(3x+2)5dx\int_{}^{}\frac{1}{\left(3x+2\right)^5}dx 69views2rank
Multiple ChoiceEvaluate the indefinite integral.∫θ∙sec2(5θ2+1)dθ\int_{}^{}\theta\bullet sec^2\left(5\theta^2+1\right)d\theta65views3rank
Multiple ChoiceEvaluate the indefinite integral.∫x(5+x)79dx\int_{}^{}x\left(5+x\right)^{79}dx 56views