76. Apparent discrepancy
Three different computer algebra systems give the following results:
∫ (dx / (x√(x⁴ − 1))) = ½ cos⁻¹(√(x⁻⁴)) = ½ cos⁻¹(x⁻²) = ½ tan⁻¹(√(x⁴ − 1)).
Explain how all three can be correct.
76. Apparent discrepancy
Three different computer algebra systems give the following results:
∫ (dx / (x√(x⁴ − 1))) = ½ cos⁻¹(√(x⁻⁴)) = ½ cos⁻¹(x⁻²) = ½ tan⁻¹(√(x⁴ − 1)).
Explain how all three can be correct.
Use Table 5.6 to evaluate the following definite integrals.
(c) ∫₃√₂^⁶ d𝓍/(𝓍² ―9)
Indefinite integrals Use a change of variables or Table 5.6 to evaluate the following indefinite integrals. Check your work by differentiating.
∫ 2 / (𝓍√4𝓍² ―1) d𝓍 , 𝓍 > ½
Evaluating integrals Evaluate the following integrals.
∫√₂/₅^²/⁵ d𝓍/𝓍√(25𝓍² ―1)
60–69. Completing the square Evaluate the following integrals.
65. ∫[1/2 to (√2 + 3)/(2√2)] dx / (8x² - 8x + 11)
Definite integrals Use a change of variables or Table 5.6 to evaluate the following definite integrals.
∫₂/₍₅√₃₎^²/⁵ d𝓍/ x√(25𝓍²― 1)
37–56. Integrals Evaluate each integral.
∫ cosh 2x dx
37–56. Integrals Evaluate each integral.
∫₀ ˡⁿ ² tanh x dx
37–56. Integrals Evaluate each integral.
∫ sinh x / (1 + cosh x) dx
37–56. Integrals Evaluate each integral.
∫ tanh²x dx (Hint: Use an identity.)
37–56. Integrals Evaluate each integral.
∫₀⁴ sech²√x / √x dx
37–56. Integrals Evaluate each integral.
∫ sinh²z dz (Hint: Use an identity.)
37–56. Integrals Evaluate each integral.
∫ sech² w tanh w dw
37–56. Integrals Evaluate each integral.
∫ (cosh z) / (sinh² z) dz
57–58. Two ways
Evaluate the following integrals two ways.
a. Simplify the integrand first and then integrate.
b. Change variables (let u = ln x), integrate, and then simplify your answer. Verify that both methods give the same answer.
∫ (sinh (ln x)) / x dx