53–57. Conic sections
d. Make an accurate graph of the curve.
x = 16y²
53–57. Conic sections
d. Make an accurate graph of the curve.
x = 16y²
Parabola-hyperbola tangency: Let P be the parabola y = px² and H be the right half of the hyperbola x² - y² = 1.
a. For what value of p is P tangent to H?
90–94. Focal chords A focal chord of a conic section is a line through a focus joining two points of the curve. The latus rectum is the focal chord perpendicular to the major axis of the conic. Prove the following properties.
Let L be the latus rectum of the parabola y ² =4px for p>0. Let F be the focus of the parabola, P be any point on the parabola to the left of L, and D be the (shortest) distance between P and L. Show that for all P, D+|FP|+ is a constant. Find the constant.
General equations for a circle Prove that the equations
X = a cos t + b sin t, y = c cos t + d sin t
where a, b, c, and d are real numbers, describe a circle of radius R provided a² +c² =b² +d² = R² and ab+cd=0.