2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
74. ∫ dx/√(√(1 + √x))
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
74. ∫ dx/√(√(1 + √x))
76-81. Table of integrals Use a table of integrals to evaluate the following integrals.
76. ∫ x(2x + 3)⁵ dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
30. ∫ x³√(1 - x²) dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
33. ∫ √(x² - 9)/x dx, x > 3
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
10. ∫ (x³ + 3x² + 1)/(x³ + 1) dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
39. ∫ x²/(100 - x²)^(3/2) dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
42. ∫ 1/(x²√(9x² - 1)) dx, x > 1/3
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
46. ∫ 1/√(1 - 2x²) dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
48. ∫ √(9 - 4x²) dx
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
54. ∫ y⁴/(1 + y²) dy
7–84. Evaluate the following integrals.
64. ∫ (ln(ax))/x dx, where a ≠ 0
7-56. Trigonometric substitutions Evaluate the following integrals using trigonometric substitution.
44. ∫ 1/√(16 + 4x²) dx
60–69. Completing the square Evaluate the following integrals.
68. ∫ dx / sqrt((x - 1)(3 - x))
Variations on the substitution method Evaluate the following integrals.
∫ 𝓍/(∛𝓍 + 4) d𝓍
Multiple substitutions If necessary, use two or more substitutions to find the following integrals.
∫ d𝓍 / [√1 + √(1 + 𝓍)] (Hint: Begin with u = √(1 + 𝓍 .)