Here are the essential concepts you must grasp in order to answer the question correctly.
Cotangent Function
The cotangent function, denoted as cot(θ), is the reciprocal of the tangent function. It is defined as cot(θ) = 1/tan(θ) or cot(θ) = cos(θ)/sin(θ). Understanding cotangent is essential for simplifying trigonometric expressions and solving problems involving angles.
Recommended video:
Introduction to Cotangent Graph
Co-Function Identity
Co-function identities relate the trigonometric functions of complementary angles. For example, cot(90° - θ) = tan(θ). This identity is crucial for simplifying expressions involving angles that sum to 90 degrees, allowing for easier calculations and approximations.
Recommended video:
Calculator Usage for Trigonometric Functions
Using a calculator to evaluate trigonometric functions requires understanding the angle mode (degrees or radians) set on the device. For this problem, ensuring the calculator is in degree mode is vital for accurately computing values like cot(90° - 4.72°) and obtaining results to the specified precision.
Recommended video:
How to Use a Calculator for Trig Functions