69. Different substitutions
b. Evaluate ∫(tan x sec² x) dx using the substitution u=secx.
69. Different substitutions
b. Evaluate ∫(tan x sec² x) dx using the substitution u=secx.
7–64. Integration review Evaluate the following integrals.
53. ∫ eˣ sec(eˣ + 1) dx
3. Describe the method used to integrate sin³x.
4. Describe the method used to integrate sinᵐx cosⁿx, for m even and n odd.
5. What is a reduction formula?
7. How would you evaluate ∫ tan¹⁰x sec²x dx?
9–61. Trigonometric integrals Evaluate the following integrals.
31. ∫ 20 tan⁶x dx
9–61. Trigonometric integrals Evaluate the following integrals.
32. ∫ cot⁵(3x) dx
9–61. Trigonometric integrals Evaluate the following integrals.
34. ∫ tan⁹x sec⁴x dx
9–61. Trigonometric integrals Evaluate the following integrals.
37. ∫ [sec⁴(lnθ)]/θ dθ
9–61. Trigonometric integrals Evaluate the following integrals.
38. ∫ tan⁵θ sec⁴θ dθ
9–61. Trigonometric integrals Evaluate the following integrals.
43. ∫ tan³(4x) dx
9–61. Trigonometric integrals Evaluate the following integrals.
45. ∫ sec²x tan¹ᐟ²x dx
9–61. Trigonometric integrals Evaluate the following integrals.
50. ∫ csc¹⁰x cot³x dx
9–61. Trigonometric integrals Evaluate the following integrals.
51. ∫ (csc²x + csc⁴x) dx