65-68. Reduction formulas Use the reduction formulas in a table of integrals to evaluate the following integrals.
67. ∫tan⁴(3y) dy
65-68. Reduction formulas Use the reduction formulas in a table of integrals to evaluate the following integrals.
67. ∫tan⁴(3y) dy
7–84. Evaluate the following integrals.
41. ∫ cot^(3/2)x · csc⁴x dx
7–84. Evaluate the following integrals.
49. ∫ tan³x · sec⁹x dx
7–84. Evaluate the following integrals.
53. ∫ eˣ cot³(eˣ) dx
Evaluate the following integrals.
∫ (1 - cosx)/(1 + cosx) dx
67-70. Integrals of the form ∫ sin(mx)cos(nx) dx Use the following product-to-sum identities to evaluate the given integrals:
sin(mx)sin(nx) = ½[cos((m-n)x) - cos((m+n)x)]
sin(mx)cos(nx) = ½[sin((m-n)x) + sin((m+n)x)]
cos(mx)cos(nx) = ½[cos((m-n)x) + cos((m+n)x)]
68. ∫ sin(5x)sin(7x) dx
67-70. Integrals of the form ∫ sin(mx)cos(nx) dx Use the following product-to-sum identities to evaluate the given integrals:
sin(mx)sin(nx) = ½[cos((m-n)x) - cos((m+n)x)]
sin(mx)cos(nx) = ½[sin((m-n)x) + sin((m+n)x)]
cos(mx)cos(nx) = ½[cos((m-n)x) + cos((m+n)x)]
70. ∫ cos(x)cos(2x) dx
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
6. ∫ (2 − sin 2θ)/cos² 2θ dθ
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
22. ∫ tan³ 5θ dθ
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
29. ∫ cos⁴ x/sin⁶ x dx
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
32. ∫ csc²(6x) cot(6x) dx
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
48. ∫ sin(3x) cos⁶(3x) dx
7–84. Evaluate the following integrals.
82. ∫ 1/(1 + tanx) dx
90–103. Indefinite integrals Determine the following indefinite integrals.
∫ dx / (1 - sin² x)
90–103. Indefinite integrals Determine the following indefinite integrals.
∫(1 + 3 cosΘ) dΘ