Problem 70a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x) = (x2 − 4x + 3) / (x − 1)
Problem 70b
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a- f(x) and lim x→a+ f(x).
f(x) = (x2 − 4x + 3) / (x − 1)
Problem 71a
Determine whether the following statements are true and give an explanation or counterexample. Assume a and L are finite numbers.
If limx→a f(x) = L, then f(a)=L.
Problem 71b
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a- f(x) and lim x→a+ f(x).
f(x) = (2x3 + 10x2 + 12x) / (x3 + 2x2)
Problem 71d
Determine whether the following statements are true and give an explanation or counterexample. Assume a and L are finite numbers.
The limit lim x→a f(x) / g(x) does not exist if g(a)=0.
Problem 72a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x) = (√(16x4 + 64x2) + x2) / (2x2 − 4)
Problem 73a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x) = (3x4 + 3x3 − 36x2) / (x4 − 25x2 + 144)
Problem 73b
Find the vertical asymptotes. For each vertical asymptote x = a, analyze lim x→a- f(x) and lim x→a+ f(x).
f(x) = (3x4 + 3x3 − 36x2) / (x4 − 25x2 + 144)
Problem 73c
Let f(x) = {x^2+1 / if x<−1
√x+1 if x≥−1.
Compute the following limits or state that they do not exist.
limx→−1 f(x)
Problem 74b
Find the vertical asymptotes. For each vertical asymptote x = a, analyze lim x→a- f(x) and lim x→a+ f(x).
f(x) = x2(4x2 − √(16x4 + 1))
Problem 75a
Evaluate lim x→2^+ √x−2.
Problem 76a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x) = (x4 − 1)/(x^2−1)
Problem 76b
Explain why lim x→3^+ √ x−3 / 2−x does not exist.
Problem 77a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=√x^2+2x+6−3 / x−1
Problem 77b
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=√x^2+2x+6−3 / x−1
Problem 78a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=|1−x^2| / x(x+1)
Problem 78b
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=|1−x^2| / x(x+1)
Problem 79
A right circular cylinder with a height of 10 cm and a surface area of S cm2 has a radius given by r(S)=1/2(√100+2S/π −10).
Find lim S→0^+ r(S) and interpret your result.
Problem 80a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=3e^x+10 / e^x
Problem 80b
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=3e^x+10 / e^x
Problem 81a
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=cos x+2√x / √x.
Problem 81b
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=cos x+2√x / √x.
Problem 82a
Consider the graph of y=cot^−1 x(see Section 1.4) and determine the following limits using the graph.
lim x→∞ cot^−1
Problem 82b
Consider the graph of y=cot^−1 x(see Section 1.4) and determine the following limits using the graph.
lim x→−∞ cot^−1x
Problem 83a
a. Use the Intermediate Value Theorem to show that the equation has a solution in the given interval.
x=cos x; (0,π/2)
Problem 83b
A sine limit It can be shown that 1−x^2/ 6 ≤ sin x/ x ≤1, for x near 0.
Use these inequalities to evaluate lim x→0 sin x/ x.
Problem 86
Use an appropriate limit definition to prove the following limits.
lim x→1 (5x−2) =3;
Problem 87
Suppose f(x) = {x^2 − 5x + 6 / x − 3 if x≠3
a if x=3.
Determine a value of the constant a for which lim x→3 f(x) = f(3).
Problem 89
Suppose g(x) = {x^2−5x if x≤−1
ax^3−7 if x>−1.
Determine a value of the constant a for which lim x→−1 g(x) exists and state the value of the limit, if possible.
Problem 91
Calculate the following limits using the factorization formula x^n−a^n=(x−a)(x^n−1+ax^n−2+a^2x^n−3+⋯+a^n−2x+a^n−1), where n is a positive integer and a is a real number.
lim x→1 x^6 − 1 / x − 1
Ch. 2 - Limits
