9–61. Trigonometric integrals Evaluate the following integrals.
34. ∫ tan⁹x sec⁴x dx
9–61. Trigonometric integrals Evaluate the following integrals.
34. ∫ tan⁹x sec⁴x dx
9–61. Trigonometric integrals Evaluate the following integrals.
37. ∫ [sec⁴(lnθ)]/θ dθ
9–61. Trigonometric integrals Evaluate the following integrals.
38. ∫ tan⁵θ sec⁴θ dθ
9–61. Trigonometric integrals Evaluate the following integrals.
43. ∫ tan³(4x) dx
9–61. Trigonometric integrals Evaluate the following integrals.
45. ∫ sec²x tan¹ᐟ²x dx
9–61. Trigonometric integrals Evaluate the following integrals.
50. ∫ csc¹⁰x cot³x dx
9–61. Trigonometric integrals Evaluate the following integrals.
51. ∫ (csc²x + csc⁴x) dx
65-68. Reduction formulas Use the reduction formulas in a table of integrals to evaluate the following integrals.
67. ∫tan⁴(3y) dy
7–84. Evaluate the following integrals.
41. ∫ cot^(3/2)x · csc⁴x dx
7–84. Evaluate the following integrals.
49. ∫ tan³x · sec⁹x dx
7–84. Evaluate the following integrals.
53. ∫ eˣ cot³(eˣ) dx
Evaluate the following integrals.
∫ (1 - cosx)/(1 + cosx) dx
67-70. Integrals of the form ∫ sin(mx)cos(nx) dx Use the following product-to-sum identities to evaluate the given integrals:
sin(mx)sin(nx) = ½[cos((m-n)x) - cos((m+n)x)]
sin(mx)cos(nx) = ½[sin((m-n)x) + sin((m+n)x)]
cos(mx)cos(nx) = ½[cos((m-n)x) + cos((m+n)x)]
68. ∫ sin(5x)sin(7x) dx
67-70. Integrals of the form ∫ sin(mx)cos(nx) dx Use the following product-to-sum identities to evaluate the given integrals:
sin(mx)sin(nx) = ½[cos((m-n)x) - cos((m+n)x)]
sin(mx)cos(nx) = ½[sin((m-n)x) + sin((m+n)x)]
cos(mx)cos(nx) = ½[cos((m-n)x) + cos((m+n)x)]
70. ∫ cos(x)cos(2x) dx
2–74. Integration techniques Use the methods introduced in Sections 8.1 through 8.5 to evaluate the following integrals.
6. ∫ (2 − sin 2θ)/cos² 2θ dθ