1. State the half-angle identities used to integrate sin²x and cos²x.
7. Antiderivatives & Indefinite Integrals
Integrals of Trig Functions
- Textbook Question7views
- Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
10. ∫ sin³x dx
8views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
11. ∫ sin²(3x) dx
6views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
13. ∫ sin⁵x dx
4views - Textbook Question
7–84. Evaluate the following integrals.
27. ∫ sin⁴(x/2) dx
6views - Textbook Question
7–40. Table look-up integrals Use a table of integrals to evaluate the following indefinite integrals. Some of the integrals require preliminary work, such as completing the square or changing variables, before they can be found in a table.
8. ∫ sin 3x cos 2x dx
4views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
15. ∫ sin³x cos²x dx
7views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
16. ∫ sin²θ cos⁵θ dθ
6views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
20. ∫ sin⁻³ᐟ²x cos³x dx
6views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
26. ∫ sin³x cos³ᐟ²x dx
6views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
25. ∫ sin²x cos⁴x dx
6views - Textbook Question
9–61. Trigonometric integrals Evaluate the following integrals.
28. ∫ 6 sec⁴x dx
7views - Textbook Question
Use Table 5.6 to evaluate the following indefinite integrals.
(b) ∫ sec 5𝓍 tan 5𝓍 d𝓍
7views - Textbook Question
Use the given substitution to evaluate the following indefinite integrals. Check your answer by differentiating.
∫ 8𝓍 cos (4𝓍² + 3) d𝓍, u = 4𝓍² + 3
3views - Textbook Question
Use Table 5.6 to evaluate the following indefinite integrals.
(d) ∫ cos 𝓍/7 d𝓍
3views