Symmetry in integrals Use symmetry to evaluate the following integrals.
∫²₋₂ [(x³ ― 4x) / (x² + 1)] dx
Symmetry in integrals Use symmetry to evaluate the following integrals.
∫²₋₂ [(x³ ― 4x) / (x² + 1)] dx
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. Assume ƒ and ƒ' are continuous functions for all real numbers.
(f) ∫ₐᵇ (2 ƒ(𝓍) ―3g (𝓍)) d𝓍 = 2 ∫ₐᵇ ƒ(𝓍) d𝓍 + 3 ∫₆ᵃ g(𝓍) d𝓍 .
Evaluate ∫₀² 3𝓍² d𝓍 and ∫₋₂² 3𝓍² d𝓍.
Why can the constant of integration be omitted from the antiderivative when evaluating a definite integral?
Properties of integrals Suppose ∫₀³ƒ(𝓍) d𝓍 = 2 , ∫₃⁶ƒ(𝓍) d𝓍 = ―5 , and ∫₃⁶g(𝓍) d𝓍 = 1. Evaluate the following integrals.
(c) ∫₃⁶ (3ƒ(𝓍) ― g(𝓍)) d𝓍
Properties of integrals Suppose ∫₀³ƒ(𝓍) d𝓍 = 2 , ∫₃⁶ƒ(𝓍) d𝓍 = ―5 , and ∫₃⁶g(𝓍) d𝓍 = 1. Evaluate the following integrals.
(d) ∫₆³ (ƒ(𝓍) + 2g(𝓍)) d𝓍
Properties of integrals Consider two functions ƒ and g on [1,6] such that ∫₁⁶ƒ(𝓍) d𝓍 = 10 and ∫₁⁶g(𝓍) d𝓍 = 5, ∫₄⁶ƒ(𝓍) d𝓍 = 5 , and ∫₁⁴g(𝓍) d𝓍 = 2. Evaluate the following integrals.
(a) ∫₁⁴ 3f(𝓍) d𝓍
Properties of integrals Consider two functions ƒ and g on [1,6] such that ∫₁⁶ƒ(𝓍) d𝓍 = 10 and ∫₁⁶g(𝓍) d𝓍 = 5, ∫₄⁶ƒ(𝓍) d𝓍 = 5 , and ∫₁⁴g(𝓍) d𝓍 = 2. Evaluate the following integrals.
(b) ∫₁⁶ (f(𝓍) ― g(𝓍)) d𝓍
Properties of integrals Consider two functions ƒ and g on [1,6] such that ∫₁⁶ƒ(𝓍) d𝓍 = 10 and ∫₁⁶g(𝓍) d𝓍 = 5, ∫₄⁶ƒ(𝓍) d𝓍 = 5 , and ∫₁⁴g(𝓍) d𝓍 = 2. Evaluate the following integrals.
(d) ∫₄⁶ (g(𝓍) ― f(𝓍) d𝓍
Properties of integrals Consider two functions ƒ and g on [1,6] such that ∫₁⁶ƒ(𝓍) d𝓍 = 10 and ∫₁⁶g(𝓍) d𝓍 = 5, ∫₄⁶ƒ(𝓍) d𝓍 = 5 , and ∫₁⁴g(𝓍) d𝓍 = 2. Evaluate the following integrals.
(f) ∫₄¹ 2f(𝓍) d𝓍
Using properties of integrals Use the value of the first integral I to evaluate the two given integrals.
I = ∫₀¹ (𝓍³ ― 2𝓍) d𝓍 = ―3/4
(a) ∫₀¹ (4𝓍―2𝓍³) d𝓍
Using properties of integrals Use the value of the first integral I to evaluate the two given integrals.
I = ∫₀¹ (𝓍³ ― 2𝓍) d𝓍 = ―3/4
(b) ∫₁⁰ (2𝓍―𝓍³) d𝓍
Using properties of integrals Use the value of the first integral I to evaluate the two given integrals.
I = ∫₀^π/2 (cos θ ― 2 sin θ) dθ = ―1
(a) ∫₀^π/2 (2 sin θ ― cos θ) dθ
Using properties of integrals Use the value of the first integral I to evaluate the two given integrals.
I = ∫₀^π/2 (cos θ ― 2 sin θ) dθ = ―1
(b) ∫₀^π/2 (4 cos θ ― 8 sin θ) dθ
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
(d) If ∫ₐᵇ ƒ(𝓍) d𝓍 = ∫ₐᵇ ƒ(𝓍) d𝓍, then ƒ is a constant function.