The following figure illustrates reciprocal crosses involving chickens with sex-linked dominant barred mutation. For Cross A and for Cross B, cross the F₁ roosters and hens and predict the feather patterns of roosters and hens in the F2.
2. Mendel's Laws of Inheritance
Sex-Linked Genes
- Textbook Question426views
- Textbook Question
A husband and wife have normal vision, although both of their fathers are red–green color-blind, an inherited X-linked recessive condition. What is the probability that their first child will be (a) a normal son, (b) a normal daughter, (c) a color-blind son, (d) a color-blind daughter?
749views - Textbook Question
In fruit flies, yellow body (y) is recessive to gray body , and the trait of body color is inherited on the X chromosome. Vestigial wing (v) is recessive to full-sized wing (v⁺), and the trait has autosomal inheritance. A cross of a male with yellow body and full wings to a female with gray body and full wings is made. Based on an analysis of the progeny of the cross shown below, determine the genotypes of parental and progeny flies.
[Table below appears at this point containing crosses and results]
1643views - Textbook Question
In a species of fish, a black spot on the dorsal fin is observed in males and females. A fish breeder carries out a pair of reciprocal crosses and observes the following results.
Identify which sex is heterogametic. Give genotypes for the parents in each cross, and explain the progeny proportions in each cross.
413views - Textbook Question
In a species of fish, a black spot on the dorsal fin is observed in males and females. A fish breeder carries out a pair of reciprocal crosses and observes the following results.
Why does this evidence support the hypothesis that a black spot is sex linked?
422views - Textbook Question
In humans, the ABO blood type is under the control of autosomal multiple alleles. Color blindness is a recessive X-linked trait. If two parents who are both type A and have normal vision produce a son who is color-blind and is type O, what is the probability that their next child will be a female who has normal vision and is type O?
1090views - Textbook Question
Lesch–Nyhan syndrome (OMIM 300322) is a rare X-linked recessive disorder that produces severe mental retardation, spastic cerebral palsy, and self-mutilation.
What is the probability that the first son of a man whose brother has Lesch–Nyhan syndrome will be affected?
589views - Textbook Question
Lesch–Nyhan syndrome (OMIM 300322) is a rare X-linked recessive disorder that produces severe mental retardation, spastic cerebral palsy, and self-mutilation.
If the first son of the woman described in (a) is affected, what is the probability that her second son is affected?
496views - Textbook Question
Lesch–Nyhan syndrome (OMIM 300322) is a rare X-linked recessive disorder that produces severe mental retardation, spastic cerebral palsy, and self-mutilation.
What is the probability that the first son of a woman whose brother has Lesch–Nyhan syndrome will be affected?
579views - Textbook Question
In Drosophila, an X-linked recessive mutation, scalloped (sd), causes irregular wing margins. Diagram the F₁ and F₂ results if (a) a scalloped female is crossed with a normal male; (b) a scalloped male is crossed with a normal female. Compare these results with those that would be obtained if the scalloped gene were autosomal.
1495views - Textbook Question
In mice, the X-linked dominant mutation Testicular feminization (Tfm) eliminates the normal response to the testicular hormone testosterone during sexual differentiation. An XY mouse bearing the Tfm allele on the X chromosome develops testes, but no further male differentiation occurs—the external genitalia of such an animal are female. From this information, what might you conclude about the role of the Tfm gene product and the X and Y chromosomes in sex determination and sexual differentiation in mammals? Can you devise an experiment, assuming you can 'genetically engineer' the chromosomes of mice, to test and confirm your explanation?
643views - Textbook Question
When the cloned cat Carbon Copy (CC) was born, she had black patches and white patches, but completely lacked any orange patches. The knowledgeable students of genetics were not surprised at this outcome. Starting with the somatic ovarian cell used as the source of the nucleus in the cloning process, explain how this outcome occurred.
435views - Textbook Question
In Drosophila, the X-linked recessive mutation vermilion (v) causes bright red eyes, in contrast to the brick-red eyes of wild type. A separate autosomal recessive mutation, suppressor of vermilion (su-v), causes flies homozygous or hemizygous for v to have wild-type eyes. In the absence of vermilion alleles, su-v has no effect on eye color. Determine the F₁ and F₂ phenotypic ratios from a cross between a female with wild-type alleles at the vermilion locus, but who is homozygous for su-v, with a vermilion male who has wild-type alleles at the su-v locus.
1687views - Textbook Question
In Drosophila, the X-linked echinus eye phenotype disrupts formation of facets and is recessive to wild-type eye. Autosomal recessive traits vestigial wing and ebony body assort independently of one another. Examine the progeny from the three crosses shown below, and identify the genotype of parents in each cross.
448views - Textbook Question
In reptiles, sex determination was thought to be controlled by sex-chromosome systems or by temperature-dependent sex determination without an inherited component to sex. But in the Australian lizard, Pogona vitticeps, it was recently revealed that sex is determined by both chromosome composition and by the temperature at which eggs are incubated. What effects might climate change have on temperature-dependent sex determination in this species, and how might this impact the sex ratio for this species in subsequent generations?
852views