A 0.400-kg object undergoing SHM has ax = -1.80 m/s2 when x = 0.300 m. What is the time for one oscillation?
17. Periodic Motion
Intro to Simple Harmonic Motion (Horizontal Springs)
- Textbook Question1215views1rank
- Textbook Question
Weighing Astronauts. This procedure has been used to 'weigh' astronauts in space: A 42.5-kg chair is attached to a spring and allowed to oscillate. When it is empty, the chair takes 1.30 s to make one complete vibration. But with an astronaut sitting in it, with her feet off the floor, the chair takes 2.54 s for one cycle. What is the mass of the astronaut?
1137views - Textbook Question
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of the motion is 0.090 m, it takes the block 2.70 s to travel from x = 0.090 m to x = -0.090 m. If the amplitude is doubled, to 0.180 m, how long does it take the block to travel from x = 0.180 m to x = -0.180 m?
2203views - Textbook Question
The point of the needle of a sewing machine moves in SHM along the x-axis with a frequency of 2.5 Hz. At t = 0 its position and velocity components are +1.1 cm and -15 cm/s, respectively. Find the acceleration component of the needle at t = 0.
1088views - Textbook Question
A 2.00-kg, frictionless block is attached to an ideal spring with force constant 300 N/m. At t = 0 the spring is neither stretched nor compressed and the block is moving in the negative direction at 12.0 m/s. Find (a) the amplitude and (b) the phase angle. (c) Write an equation for the position as a function of time.
2614views2rank - Textbook Question
In a physics lab, you attach a 0.200-kg air-track glider to the end of an ideal spring of negligible mass and start it oscillating. The elapsed time from when the glider first moves through the equilibrium point to the second time it moves through that point is 2.60 s. Find the spring's force constant.
2090views - Textbook Question
A 2.40-kg ball is attached to an unknown spring and allowed to oscillate. Figure E14.7 shows a graph of the ball's position x as a function of time t. What are the oscillation's (a) period, (b) frequency, (c) angular frequency, and (d) amplitude? (e) What is the force constant of the spring?
1058views - Textbook Question
A 2.40-kg ball is attached to an unknown spring and allowed to oscillate. Figure E14.7 shows a graph of the ball's position x as a function of time t. What are the oscillation's (a) period, (b) frequency, (c) angular frequency, and (d) amplitude? (e) What is the force constant of the spring?
1392views - Textbook Question
The wings of the blue-throated hummingbird (Lampornis clemenciae), which inhabits Mexico and the southwestern United States, beat at a rate of up to 900 times per minute. Calculate (a) the period of vibration of this bird's wings, (b) the frequency of the wings' vibration, and (c) the angular frequency of the bird's wing beats.
733views - Textbook Question
A machine part is undergoing SHM with a frequency of 4.00 Hz and amplitude 1.80 cm. How long does it take the part to go from x = 0 to x = -1.80 cm ?
1902views - Textbook Question
The displacement of an oscillating object as a function of time is shown in Fig. E14.4. What is (c) the period? (d) the angular frequency of this motion?
2109views - Textbook Question
The displacement of an oscillating object as a function of time is shown in Fig. E14.4. What is (a) the frequency? (b) the amplitude?
1791views - Textbook Question
(II) Consider two objects, A and B, both undergoing SHM, but with different frequencies, as described by the equations xA = (2.0 m) sin (4.0 t) and xB = (5.0 m) sin (3.0 t), where t is in seconds. After t = 0, find the next three times t at which both objects simultaneously pass through the origin.
542views - Textbook Question
Astronauts in space cannot weigh themselves by standing on a bathroom scale. Instead, they determine their mass by oscillating on a large spring. Suppose an astronaut attaches one end of a large spring to her belt and the other end to a hook on the wall of the space capsule. A fellow astronaut then pulls her away from the wall and releases her. The spring's length as a function of time is shown in FIGURE P15.46. What is her speed when the spring's length is 1.2 m?
1227views - Textbook Question
A 100 g block attached to a spring with spring constant 2.5 N/m oscillates horizontally on a frictionless table. Its velocity is 20 c/m when 𝓍 = -5.0 cm What is the block's position when the acceleration is maximum?
818views